Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
химия мономеров.doc
Скачиваний:
780
Добавлен:
25.11.2019
Размер:
14.61 Mб
Скачать

1.1.6. Коксование

Основная цель процесса коксования – получение светлых нефтепро-дуктов и кокса из гудрона и тяжелых нефтяных остатков. В зависимости от вида сырья и условий процесса можно получить топливный, анодный или игольчатый кокс. На рис. 1.2 показана принципиальная схема установки за-медленного коксования фирмы "АББ Луммус Крест".

35

Рис. 1.2. Принципиальная технологическая схема установки замедленного

коксования фирмы "АББ Луммус Крест"

1 - ректификационная колонна; 2- нагревательная печь; 3- камеры

коксования; 4 - сепаратор; 5 - блок разделения бензина и газов.

Потоки: I – сырье; II – пар; III - топливный газ; IV– углеводороды

С3-С4; V – бензин; VI - легкий газойль; VII – тяжелый газойль

Сырье после нагревания подают в ректификационную колонну 1 для извлечения легких нефтяных фракций, содержащихся в сырье, и извлечения тяжелых фракций – рециркулята – из паро-продуктовой смеси, поступоющей из камер коксования 3.Рециркулят смешивают с сырьем, затем он поступает из нижней части колонны в нагревательную печь 2, где сырьевая смесь на-гревается до температуры 753-783 К. После печи она направляется в необог-реваемые камеры 3. Газо-продуктовая смесь выходит из верхней части камер коксования и поступает в ректификационную колонну 1, где разделяется на газ, бензин, легкий и тяжелый газойли. Газ и бензин выходят сверху из ко-лонны, проходят сепаратор 4 и в колонне 5 разделяются на топливный газ, пропан-пропиленовую, бутан-бутиленовую фракции, легкий и тяжелый бен-зин. Кокс из камеры 3 удаляется водой под высоким давлением.

Выбор технологии коксования определяется тем, какие именно нефте-продукты являются целевыми. Замедленное коксование проводится для уве-личения выхода нефтяного кокса, коксование в кипящем слое – для увеличе-ния выработки светлых продуктов.

1.2. Каталитические процессы

Основными процессами углубленной переработки нефти являются ка-талитические процессы: гидрокрекинг и каталитический крекинг. Из дест-руктивных процессов переработки нефти наиболее широко используется ка-талитический крекинг. Большинство процессов каталитического крекинга в мире проводится в "кипящем слое" катализатора.

1.2.1. Каталитический крекинг

Из каталитических процессов наиболее важным является процесс ката-литического крекинга нефтяного сырья с получением продуктов меньшей молекулярной массы: компонентов высокооктановых бензинов, легкого га-зойля, углеводородных газов С-С и др. Приблизительно около одной трети

34

всей добываемой нефти перерабатывается на установках каталитического крекинга.

Процесс каталитического крекинга впервые был осуществлен в про-мышленном масштабе в 1936 г. для переработки керосино-газойлевых фрак-ций с целью получения бензина. Процесс проводили в стационарном слое ка-тализатора, в качестве которого использовали кислые природные глины - монтмориллониты. В 1940 г. использование в качестве катализатора алюмо-

36

силиката позволило повысить выход бензиновых фракций. В 1941 г. процесс крекинга стали проводить в "кипящем слое" на микросферическом катализа-торе, а в 1942 г. - в движущемся слое гранулированного шарикового катали-затора.

Значительное улучшение процесса каталитического крекинга связано с открытием каталитической активности цеолитов и цеолитсодержащих ката-лизаторов на их основе. Впервые цеолиты применили в промышленном мас-штабе в 1962 г. Их использование позволило осуществить крекинг в лифт-реакторе.

При проведении каталитического крекинга протекает ряд последова-тельно-параллельных реакций, в которых участвуют как молекулы исходных веществ, так и вещества, образующиеся в ходе реакции:

- крекинг насыщенных углеводородов с образованием алифатических уг-леводородов меньшей молекулярной массы;

- крекинг циклических углеводородов с образованием алкенов ( олефи-

нов);

- деалкилирование алкилароматических углеводородов;

- расщепление боковых цепей алкилароматических углеводородов;

- крекинг олефинов с образованием олефинов меньшей молекулярной

массы;

- изомеризация;

- диспропорционирование олефинов с низкой молекулярной массой;

- перераспределение водорода;

- полимеризация, конденсация и коксообразование.

При каталитическом крекинге насыщенных углеводородов образуются менее высокомолекулярные алканы и олефины, так как чем больше молеку-лярная масса углеводорода, тем легче идет расщепление. Крекинг алканов нормального строения сопровождается вторичными реакциями, приводящи-ми к образованию ароматических углеводородов и кокса. Нафтеновые угле-водороды с длинными алкильными цепями превращаются в алкилнафтено-вые или алкилароматические углеводороды со сравнительно короткими бо-ковыми цепями. Крекинг ароматических углеводородов, преимущественно алкилароматических, сопровождается их деалкилированием и переалкилиро-ванием, а также конденсацией. При деалкилировании образуются алканы, олефины и алкилароматические соединения меньшей молекулярной массы. Конденсация ароматических углеводородов друг с другом или с непредель-ными соединениями приводит к образованию полициклических углеводоро-дов, что способствует отложению кокса на поверхности катализатора. Этот кокс состоит из агломератов с псевдографитовой структурой и многоядерных ароматических углеводородов. С повышением глубины конверсии сырья, температуры реакции и длительности контакта катализатора с сырьем увели-чивается соотношение углерод:водород в коксе.

37

Расщепление связей С—С протекает по ионному (гетеролитическому) механизму. Катализаторами гетеролитического расщепления связей С—С являются алюмосиликаты. Катализатор в этом процессе - донор протонов Н+ Н+-

, которыйможноусловнообозначитьА. Ион водорода при присоедине-нии к олефину образует ион СН+, что является начальной стадией ионной цепной реакции распада. Обычно разрыв связи С—С происходит по -правилу: разрывается связь, находящаяся в -положении по отношению к положительно заряженному атому углерода. Такое расщепление приводит к образованию третичного карбкатиона. Например, диизобутилен подвергает-ся следующим превращениям: происходят следующие превращения:

CH CH

33

К

CHCCHC=CH + H+A- CHCCHCCH + A- ;



322323

CH CH

CH

CH

33

3

3

CH

3

+

+

CHCCHCCH

CHCCH +

CH=CCH

323

33

23 ;

CH

CH

CH

CH

3

3

3

3

CH

CH

3

3

+

+

СHCCH

+ CHCCHC=CH

CHCCHCCH + СН=CCH

33

322

32323

C CH

CHСH

CHCHCH;

3

3 3

3 3 3

CH

3

+

+

CHCCHCCH

CHCCH + CH=CCH и т.д.

323

3323

CH CHCH CH

33 33

Обрыв цепи происходит в результате соединения иона карбкатиона с анионом катализатора:

+ -=C + H+-

C(CH) + A CHCHA

3323

CH

3

От образующегося третичного карбкатиона отщепляется в данном слу-чае молекула олефина с четырьмя атомами углерода – изобутилен:

CH

3

+ +

CHCCHCCH CHCCH + CH=CCH

3233323

CH CHCH CH

33 33

От вторичного карбкатиона отщепляется молекула олефина с тремя уг-леродными атомами, например пропилен:

+

=CHCHCHСH + H+A--

СHCHCH CHCHCHCHCHCHСH + A

222223322223

+ +

CHCHCHCHCHCHСH CH=CHCH + CHCHCHСH

322223 232223

38

Насыщенные углеводороды непосредственно не образуют ионов кар-бкатионов. По-видимому, сначала они претерпевают термическое превраще-ние в алкан и олефин, например:

CHCHCHCH CHCH + CH=CH

32233322

Образующийся олефин с большой скоростью превращается в ион кар-бкатиона, который начинает реакционную цепь.

Деструкция циклоалканов протекает аналогично деструкции насыщен-ных ациклических углеводородов, при этом расщеплению подвергается как цикл, так и боковые цепи. Циклоалканы могут расщепляться по нескольким схемам:

Алкилциклоалкан

Алкан+циклоолефин

Олефин +олефин ↓

Олефин+циклоалкан

Бензол и замещенные бензолы при каталитическом процессе не расще-пляются. В замещенных бензолах первичное расщепление происходит по месту присоединения заместителя к кольцу:

CH-CH-CH

22 3

+ CHCH=CH

32

Тепловые эффекты реакций каталитического крекинга различаются по величине и знаку. Реакции разрыва С—С-связей протекают с поглощением тепла, а реакции изомеризации, циклизации, полимеризации олефинов, алки-лирования, гидрирования и некоторые другие - с выделением тепла. Преоб-ладающими являются эндотермические реакции.

Количество продуктов крекинга и их состав зависят от характера сы-рья, природы катализатора и технологических параметров процесса. Темпе-ратура процесса определяется характеристиками катализатора и сырья, вре-менем их контакта, назначением процесса, конструкцией реакторного блока. Реальный температурный интервал процесса каталитического крекинга 723-803 К. С повышением температуры возрастает степень конверсии, увеличи-вается выход сухого газа и бутан-бутиленовой фракции, уменьшается выход бензина, усиливается коксообразование, увеличивается степень ароматиза-ции продуктов крекинга, что приводит к повышению октанового числа бен-зина крекинга и снижению цетанового числа компонентов дизельной фрак-ции. В бензиновых фракциях с повышением температуры снижается содер-жание насыщенных углеводородов и увеличивается содержание олефинов.

Первоначально каталитический крекинг проводили при давлении в ре-акторе и регенераторе не более 0,07 МПа. В дальнейшем для интенсифика-ции выжига кокса с поверхности катализатора давление увеличили до 0,4 МПа. Поскольку с повышением давления интенсивность коксообразования

39

значительно возрастает, то для уменьшения выхода кокса сырье разбавляют водяным паром. Это особенно важно при переработке тяжелого сырья.

Степень превращения сырья и выход продуктов в значительной степе-ни определяются временем контакта сырья с катализатором. Чем меньше продолжительность пребывания сырья в реакционной зоне, тем ниже степень его конверсии. Уменьшение времени контакта может быть скомпенсировано более высокой активностью катализатора и повышением температуры.

Сырье и целевые продукты

В качестве сырья в процессах каталитического крекинга используют керосиногазойлевыефракции (473-623 ) вакуумныегазойли (623-773 К).

- Ки

Присутствие в сырье металлов, коксообразующих веществ, азотистых и сернистых соединений отрицательно влияет на эффективность каталитиче-ского крекинга.

Металлы (никель, ванадий, медь, железо и другие содержатся в высо-кокипящих фракциях в основном в виде порфириновых комплексов. Для уст-ранения их дезактивирующего действия на катализатор крекинга обычно ис-пользуют два приема:

- выделение металлов из сырья каталитического крекинга - деметаллиза-ция;

- пассивация металлов, отложившихся на катализаторе.

Суммарное содержание никеля, ванадия и натрия в сырье не должно превышать 1 мас. ч. на 1млн.

Один из самых рациональных способов подготовки нефтяных фракций для каталитического крекинга - гидроочистка, позволяющая значительно по-высить степень превращения сырья и выход бензина, а также понизить кок-сообразование и содержание серы в продуктах крекинга.

Катализаторы процесса крекинга

Первые установки каталитического крекинга с неподвижным слоем ка-тализатора, в качестве которого использовали кислые природные глины, поя-вились в 1940-х годах. В 1950-х годах вместо катализаторов на основе при-родных глин стали применять аморфные синтетические алюмосиликаты. Эти катализаторы значительно активнее, чем катализаторы на основе глин; обла-дают большей стабильностью и механической прочностью. В середине 1960-х годов появились аморфные алюмосиликатные катализаторы с высоким со-держанием АlО.

23

Одновременно были разработаны цеолитные катализаторы крекинга, которые оказались на несколько порядков активнее аморфных алюмосили-катных катализаторов и позволяли значительно увеличить выход бензина.

40

Создание цеолитных катализаторов крекинга поистине совершило переворот в нефтепереработке, прежде всего в процессах каталитического крекинга.

Цеолиты представляют собой алюмосиликаты каркасной структуры с полостями, занятыми большими ионами и молекулами воды, которые харак-теризуются значительной подвижностью. Это обеспечивает возможность ионного обмена и обратимой дегидратации.

Совершенствование цеолитных катализаторов привело к созданию но-вой технологии каталитического крекинга – к процессу крекинга с подвиж-ным потоком пылевидного катализатора, это так называемый крекинг в лифт-реакторе. Технология была реализована в начале 1980-х годов, и в настоящее время крекинг в лифт-реакторе является главным в нефтепереработке.

Одними из наиболее распространенных установок каталитического крекинга являются установки фирмы "Келлог". На рис. 1.3 представлен реак-торно- регенераторный блок процесса крекинга фирмы "Келлог". Установка позволяет перерабатывать вакуумные газойли и мазуты в высококачествен-ные продукты.

Рис. 1.3. Реакторно-регенеративный блок установки каталитического крекин-

га по лицензии фирмы "Келлог"

1 - боковой отвод; 2 - расширительная муфта; 3 - вертикальный лифт-

реактор; 4 - отвод с правым поворотом; 5 - система закрытых циклонов;

6 - двухступенчатый десорбер; 7 - регенератор; 8 - внешний коллектор

41

дымовых газов; 9, 10 - пробковые краны для катализатора; 11 - охлади-

тель катализатора в плотной фазе

Регенерированный катализатор через подводящий трубопровод 1 сме-шивается с сырьем, которое поступает из бункера через распылитель сырья 2. В реакторе 3 осуществляются реакции каталитического крекинга. Газопро-дуктовая смесь проходит через соединительный трубопровод 4 и систему циклонов 5, а затем поступает в ректификационную колонну на разделение. От закоксованного катализатора в двухступенчатом десорбере 6 выделяют жидкие нефтепродукты, после чего катализатор регенерируют в регенерато-ре 7. Газы регенерации отделяются в циклонах от каталитической пыли и через камеру 8 выходят в атмосферу. Подача свежего катализатора осущест-вляется через краны 9 и 10. Для оптимизации температуры регенератора при работе на тяжелом сырье применяется охлаждение катализатора в плотной фазе.