Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пенроуз Р. в тени разума.doc
Скачиваний:
21
Добавлен:
28.10.2018
Размер:
2.97 Mб
Скачать

2.10. Возможные формальные возражения против 181

мы получаем в этом смысле в детском (или уже взрослом) возрасте, сводится к сравнительно небольшому количеству описаний понятий "нуля", "единицы", "двух", "трех" и т.д. ("три апельсина", "один банан" и т.п.), однако при этом, несмотря на всю неадекватность такого описания, мы как-то умудряемся постичь всю концепцию в целом. В некотором платоническом смысле натуральные числа видятся своего рода категориями, обладающими абсолютным концептуальным существованием, от нас никак не зависящим. И все же, несмотря на "человеконезависимость" натуральных чисел, мы оказываемся способны установить интеллектуальную связь с действительной концепцией натуральных чисел, опираясь лишь на неоднозначные и, на первый взгляд, неадекватные описания. С другой стороны, не существует конечного набора аксиом, с помощью которого можно было бы провести четкую границу между множеством натуральных чисел и альтернативным ему множеством так называемых "сверхнатуральных" чисел.

Более того, такое специфическое свойство всей совокупности натуральных чисел, как их бесконечное количество, мы также можем каким-то образом воспринимать непосредственно, тогда как система, действие которой ограничено точными конечными правилами, не способна отличить данную конкретную бесконечность натуральных чисел от других возможных ("сверхнатуральных") вариантов. Мы же легко понимаем бесконечность, характеризующую натуральные числа, пусть и обозначаем ее просто точками "..." -

"О, 1,2,3,4,5,6,...", либо сокращением "и т. д." -

"нуль, один, два, три и т. д.".

Нам не нужно объяснять на языке каких-то точных правил, что именно представляет собой натуральное число. В этом смысле можно считать, что нам повезло, так как такое объяснение дать невозможно. Как только нам приблизительно укажут верное направление, мы тут же обнаруживаем, что уже откуда-то знаем, что это за штука такая - натуральное число!

Возможно, некоторые читатели знакомы с аксиомами Пеа-но для арифметики натуральных чисел (об арифметике Пеано я уже упоминал в § 2.7), и, возможно, теперь эти читатели находятся в некотором недоумении: почему же аксиомы Пеано не дают

182 Глава 2

адекватного определения натуральных чисел. Согласно определению Пеано, мы начинаем ряд натуральных чисел с символа О и затем добавляем слева особый "оператор следования", обозначаемый S и осуществляющий простое прибавление единицы к числу, над которым совершается действие, т. е. 1 определяется как SO, 2 как S1 или SSO и т. д. В качестве правил мы располагаем следующими утверждениями: если Sa=Sb, то а=Ь; и ни при каком х число 0 нельзя записать в виде Sx (последнее утверждение служит для характеристики числа 0). Кроме того, имеется "принцип индукции", согласно которому некое свойство чисел (скажем, Р) должно быть истинным в отношении всех чисел п, если оно удовлетворяет двум условиям: (i) если истинно Р (п), то для всех п истинно также и Р (Sn); (ii) P (0) истинно. Сложности начинаются, когда дело доходит до логических операций, символы которых V и 3 в стандартной интерпретации означают, соответственно, "для всех натуральных чисел..." и "существует такое натуральное число..., что". В нестандартной интерпретации смысл этих символов соответствующим образом изменяется, так что они квантифицируют уже не натуральные числа, а "числа" какого-то другого типа. Хотя математические спецификации Пеано, задающие оператор следования S, действительно описывают отношение упорядочения, отличающее натуральные числа от разных прочих "сверхнатуральных" чисел, эти определения невозможно записать в терминах формальных правил, которым удовлетворяют кванторы V и 3. Для того чтобы передать смысл математических определений Пеано, необходимо перейти к так называемой "логике второго порядка", в которой также вводятся кванторы типа V и 3, но только теперь они оперируют не над отдельными натуральными числами, а над множествами (бесконечными) натуральных чисел. В "логике первого порядка" арифметики Пеано кванторы оперируют над отдельными числами, и в результате получается формальная система в обычном смысле этого слова. Логика же второго порядка нам формальной системы не дает. В случае строгой формальной системы вопрос о правильности применения правил системы решается чисто механическими (т. е. алгоритмическими) способами - в сущности, именно это свойство формальных систем и послужило причиной их рассмотрения в настоящем контексте. В рамках логики второго порядка упомянутое свойство не работает.