Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пенроуз Р. в тени разума.doc
Скачиваний:
21
Добавлен:
28.10.2018
Размер:
2.97 Mб
Скачать

2.10. Возможные формальные возражения против 177

ZF-игра, судя по всему, представляет собой исключительно разумный подход, позволяющий реализовать большую часть того, что нас интересует в обычной математике. Однако по причинам, которые обозначены выше, я совершенно не в состоянии понять, каким же образом из нее может "произрасти" реальная точка зрения в отношении чьих бы то ни было математических убеждений. Ибо если кто-то считает, что с помощью "практикуемой" им математики он устанавливает исключительно подлинные математические истины - скажем, истинность высказываний, - то он должен верить и в то, что используемая им система обоснованна', а если он верит в ее обоснованность, то он должен также верить в ее непротиворечивость, то есть в то, что -высказывание, утверждающее истинность G (F), действительно истинно, несмотря на то, что оно НЕРАЗРЕШИМО. Таким образом, математические убеждения человека должны включать в себя нечто, что в рамках ZF-игры невыводимо. С другой стороны, если человек не верит в обоснованность формальной системы ZF, то он не может верить и в подлинную истинность ИСТИННЫХ результатов, полученных с помощью ZF-игры. В обоих случаях сама по себе ZF-игра не в состоянии снабдить нас удовлетворительной позицией в том, что касается математической истинности. (Это равным образом применимо к любой формальной системе ZF*.)

Q15. Выбранная нами формальная система F может и не оказаться непротиворечивой - по крайней мере, мы не можем быть вполне уверены в ее непротиворечивости; по какому же, в таком случае, праву мы утверждаем, что высказывание G (F) "очевидно" истинно?

Хотя этот вопрос был достаточно исчерпывающе рассмотрен в предыдущих обсуждениях, я полагаю, что суть того рассмотрения полезно будет изложить еще раз, поскольку возражения, подобные Q15, чаще всего оказываются среди нападок на наше с Лукасом приложение теоремы Гёделя. Суть же в том, что мы вовсе не утверждаем, что высказывание G(F) непременно истинно для любой формальной системы F, мы утверждаем лишь, что высказывание G (F) настолько же достоверно, насколько достоверна любая другая истина, получаемая применением правил

178 Глава 2

самой системы F. (Вообще говоря, высказывание G (F) оказывается более достоверным, нежели утверждения, получаемые действительным применением правил F, так как система F, даже будучи непротиворечивой, не обязательно будет обоснованной!) Если мы верим в истинность любого утверждения Р, выводимого исключительно с помощью правил системы F, то мы должны верить и в истинность G (F), по крайней мере, в той же степени, в какой мы верим в истинность Р. Таким образом, ни одна постижимая формальная система F - или эквивалентный ей алгоритм F - не может послужить абсолютно полной основой для подлинного математического познания или формирования убеждений. Как отмечалось в комментариях к Q5 и Q6, наше доказательство построено как reductlo ad absurdum: мы выдвигаем предположение, что система F действительно является абсолютной основой для формирования убеждений, а затем показываем, что такое предположение приводит к противоречию, т. е. является неверным.

Мы, конечно же, можем, как в Q14, выбрать для удобства какую-то конкретную систему F, хотя уверенности в том, что она обоснованна, а потому непротиворечива, это нам не добавит. Впрочем, при наличии действительных сомнений в обоснованности системы F любой получаемый в рамках F результат Р следует формулировать в виде

"высказывание Р выводимо в рамках системы F"

(или, что то же самое, "высказывание Р ИСТИННО"), избегая утверждений вида "высказывание Р истинно". Такое утверждение в математическом смысле вполне приемлемо и может быть либо действительно истинным, либо действительно ложным. Совершенно законным образом мы можем свести все наши математические высказывания к утверждениям такого рода, однако и в этом случае нам никуда не деться от утверждений об абсолютных математических истинах. При случае мы можем прийти к убеждению, будто мы установили, что какое-то утверждение вышеприведенного вида является в действительности ложным, т. е. получить следующий результат:

"высказывание Р невыводимо в рамках системы F".

Такие утверждения имеют вид: "такое-то вычисление не завершается" (или, по сути, "будучи примененным к высказыванию Р,