Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пенроуз Р. в тени разума.doc
Скачиваний:
21
Добавлен:
28.10.2018
Размер:
2.97 Mб
Скачать

6.12. Новый критерий 521

в нашем повседневном понимании - примерно столько весит блоха.

Понятно, что в классическом мире единицы эти не очень удобны - за исключением, разве что, планковской массы, - однако они оказываются как нельзя более полезными при рассмотрении эффектов, предположительно связанных с квантовой гравитацией. Ниже приведены некоторые из наиболее значимых физических величин, выраженные в абсолютных единицах (очень приблизительно):

секунда = 1,9 х 1043

сутки =1,6 х 1048

год = 5,9 х 1050

метр=6,3х 1034

сантиметр = 6,3 х 1032

микрон = 6, Зх 1028

ферми ("радиус сильного взаимодействия") = 6,3 х 1019 масса нуклона = 7,8 х 10~20 грамм = 4,7 х 104

эрг = 5,2 х 1(Г17 кельвин = 4 х 10~33 плотность воды = 1,9 х 10~94.

6.12, Новый критерий

В этом параграфе я сформулирую новый критерий гравитационной редукции вектора состояния, существенно отличный от того, что был предложен в НРК, но близкий к некоторым идеям, высказанным в последнее время Диози и другими учеными. Причины, побудившие меня к поискам связи между R-процедурой и гравитацией, остаются в силе, однако моя теперешняя гипотеза получила с тех пор^ дополнительную теоретическую поддержку с другой стороны. Более того, мне удалось избавиться от некоторых концептуальных проблем, присущих прежнему варианту, и сделать его более удобным для применения. В НРК я

522 Глава 6

предлагал отыскать критерий, который позволял бы определить, когда два состояния (каждое со своим гравитационным полем - т. е. пространством-временем) оказываются слишком различными для того, чтобы продолжать сосуществовать в квантовой линейной суперпозиции. Соответственно, на этом этапе должна была происходить редукция R. Нынешняя идея несколько отличается от прежней. Мы больше не ищем некую абсолютную меру гравитационной разницы между состояниями, чтобы выяснить с ее помощью, в какой момент состояния разойдутся настолько, что суперпозиция станет невозможна. Вместо этого, мы рассматриваем суперпозицию сколь угодно разных состояний как нестабильную - в том смысле, в каком нестабильно, например, ядро урана - и вводим величину скорости редукции вектора состояния, каковая скорость определяется как раз степенью разности состояний. Чем больше разность, тем выше скорость редукции.

Для наглядности применим новый критерий сначала к конкретной ситуации, описанной в §6.10, хотя его несложно обобщить и на многие другие случаи. Нас, в частности, интересует энергия, необходимая в упомянутой ситуации для того, чтобы сдвинуть одну копию объекта относительно другой, с учетом лишь гравитационных эффектов. Итак, мы представляем себе, что два объекта (две массы) первоначально занимают один и тот же объем пространства (см. рис. 6.6); затем одна копия объекта начинает медленно удаляться от другой, уменьшая по мере движения степень взаимопроникновения, пока, наконец, не произойдет полное их разделение, т. е., в контексте рассматриваемой ситуации, пока не будет достигнута суперпозиция состояний. Взяв величину, обратную затраченной на эту операцию гравитационной энергии (в абсолютных единицах8), мы получим приближенное время (также в абсолютных единицах), по истечении которого произойдет редукция состояния, в результате которой объект из состояния суперпозиции самопроизвольно и скачкообразно перейдет в то или иное локализованное состояние.

Если в качестве объекта был выбран шар с массой m и

8Ничто, впрочем, не мешает нам выразить время редукции в более привычных, нежели введенные выше абсолютные, единицах. В этом случае время редукции определяется просто как , где Е - все та же гравитационная энергия разделения, а - единственная постоянная, которая нам понадобится. То обстоятельство, что в выражении никак не участвует скорость света с, наводит на мысль о целесообразности рассмотрения теории "ньютоновской" модели такого рода (см., напр., [50]).