Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пенроуз Р. в тени разума.doc
Скачиваний:
21
Добавлен:
28.10.2018
Размер:
2.97 Mб
Скачать

5.17. Квантовая сцепленность 455

реальной информации правой частице не передается. Одно лишь "установление направления оси спина" не производит, само по себе, никакого реально наблюдаемого эффекта. Несмотря на то, что сегодня все это хорошо понимают, до сих пор встречаются люди, которые тешат себя надеждой отыскать способ использовать ЭПР-эффект для мгновенной передачи сигналов из одного места в другое, ведь редукция вектора состояния R "редуцирует" квантовое состояние ЭПР-пары частиц мгновенно, вне зависимости от того, какое расстояние их разделяет. Как это ни печально, однако способа передать посредством описанной процедуры сигнал от левой частицы к правой не существует (см. [145]).

Согласно стандартному квантовомеханическому формализму все, действительно, так и выглядит: немедленно по выполнении измерения, скажем, левой частицы происходит редукция полного состояния системы - из начального сцепленного состояния (где ни одна частица в отдельности определенного спинового состояния не имеет) в состояние, при котором левое состояние "расцепляется" с правым, а оба спина приобретают вполне определенное значение. В математическом описании в терминах вектора состояния измерение слева и в самом производит на правую частицу мгновенное воздействие. Но, как я уже говорил, передать посредством такого "мгновенного воздействия" физический сигнал, увы, невозможно.

Согласно принципам теории относительности, физические сигналы (т. е. все, что способно передавать реальную информацию) неизбежно ограничены в своем распространении скоростью света: они могут распространяться медленнее, но быстрее - никогда. Однако для ЭПР-эффектов такое рассмотрение не годится. Представление об ЭПР-эффектах как о конечных сигналах, распространение которых ограничено скоростью света, противоречит всем предсказаниям квантовой теории. (Это обстоятельство хорошо иллюстрируется примером с магическими додекаэдрами - сцепленность между моим додекаэдром и додекаэдром моего коллеги гарантирует их мгновенное взаимодействие, и нет необходимости ждать четыре года, которые затратит на преодоления расстояние между нами световой сигнал; см. §§5.3, 5.4, а также примечание 4 в конце главы.) Следовательно, ЭПР-эффекты не могут быть сигналами в обычном смысле этого слова.

Как же в таком случае объяснить тот факт, что ЭПР-эффекты способны-таки повлечь за собой вполне наблюдаемые

456 Глава 5

последствия? То, что они способны, следует, например, из знаменитой теоремы Джона Белла (см. § 5.4). Совместные вероятности, предсказываемые квантовой теорией для различных возможных измерений состояния двух частиц со спином ^ (с независимым выбором направления оси спина левой и правой частицы), невозможно получить ни в какой классической модели несообщающихся левого и правого объектов. (Такого рода примеры описаны и в НРК, с. 284-285 и 301.) Магические додекаэдры из § 5.3 дают еще более сильный эффект - здесь речь идет уже не просто о вероятностях, но о вполне точных "да/нет"-ограничениях. Таким образом, хотя левая и правая частицы не сообщаются друг с другом в смысле реальной возможности мгновенной передачи сообщений от одного к другому, они, тем не менее, остаются сцепленными в том смысле, что их нельзя рассматривать как отдельные независимые объекты, - до того момента, пока их окончательно не расцепит измерение. Квантовая сцепленность - это загадочный феномен, находящийся где-то между прямым сообщением и полным разделением и не имеющий классического аналога. Более того, эффект сцеплен-ности не ослабевает с увеличением расстояния между объектами (в отличие, скажем, от гравитационного или электрического притяжения, величина которого обратно пропорциональна этому самому расстоянию). Эйнштейна это свойство сцепленности крайне нервировало, он называл его "жутковатым действием на расстоянии" (см. [259]).

Квантовая сцепленность не обращает никакого внимания не только на разделенность в пространстве, но и на разделенность во времени. Если измерение одного из компонентов ЭПР-пары выполнено прежде такого же измерения другого компонента, то в обычном квантовомеханическом описании считается, как правило, что расцепленность пары явилась результатом именно первого измерения, второе же измерение "захватывает" уже только один, расцепленный, компонент - собственно тот, над которым оно производится. Однако в точности такие же наблюдаемые результаты мы получим, если допустим, что второе измерение каким-то образом ретроактивно вызвало расцепление, оставив первое в стороне. Окончательный результат не зависит от порядка выполнения измерений - иначе говоря, измерения коммутируют (см. § 5.14).