Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции_сборник.docx
Скачиваний:
793
Добавлен:
06.02.2016
Размер:
36.46 Mб
Скачать

1.3. Обоснование параметров направляющей кривой

Как уже было отмечено, цилиндроидальная поверхность образована перемещением линейной образующей по направляющей кривой.

В качестве направляющей кривой обычно используют параболу, построенную на основе дуги окружности. Парабола представляет собой кривую с переменным радиусом кривизны, что способствует крошению почвы. Поскольку основной направляющей кривой является дуга окружности, то определяющим параметром ее становится радиус. От величины радиуса зависят размеры поверхности, причем они должны оказаться достаточными для размещения на ней почвенного пласта (рис.1.17).

Когда пласт, подрезанный лезвием лемеха АВ, деформируется и поместится на отвале, то линия СВ, перпендикулярная к лезвию должна быть размещена на поверхности в виде кривой , т.е. длина дугидолжна равняться прямой ВС.

Так как

,

а длина дуги

,

то

, (1.7)

или

.

Рис. 1.17. Размещение пласта на лемешно-отвальной поверхности

Если радиус направляющей кривой взять меньше этого, то пласт не разместится на поверхности и почва будет пересыпаться через отвал, т.е. это наименьшее из возможных значений радиуса:

. (1.8)

Верхний предел радиуса предложено определять, исходя из условия отсутствия задираемости пласта крылом отвала [1]. Это будет выполнено тогда, когда двугранный угол i между касательной к крылу плоскостью и поверхностью отваленного пласта будет меньше 90, т.е. i < 90 (рис. 1.18).

Рис. 1.18. Взаимодействие крыла корпуса с верхней гранью отвального пласта

Корпус плуга относительно осей координат размещен так, что лезвие лемеха АВ расположено параллельно ОХ. В этом случае плоскость ZOY перпендикулярна лезвию, следовательно, след сечения этой плоскостью лемешно-отвальной поверхности – дуга может быть представлена в качестве направляющей кривой.

Пусть произвольная точка m находится на дуге . Через эту точку можно провести горизонтальную и касательную плоскости. Горизонтальная плоскость пройдет через прямуюmF,которая является одной из образующих. Для цилиндрического отвала mF параллельна АВ. Эта же горизонтальная плоскость пересечет пласт по линии FK//АО. Очевидно, что угол KFm = 0 . Касательная плоскость будет соприкасаться с отвалом по всей линии mF. Пусть двугранный угол между касательной плосостью и дном борозды будет обозначен . Угол между гранью отваленного пласта и горизонтальной плоскостью ранее уже был обозначен . Чтобы установить связь между углами , ,  и i из точки F некоторым радиусом, который считают единичным, описывают сферу.

Горизонтальная, касательная плоскости и поверхность пласта пересекутся сферой по дугам КЕ, ЕJ и KJ, которые образуют косоугольный сферический треугольник EKJ. Угол при вершине К не что иное, как δ, при вершине Е равен θ, в при вершине J равен двухгранному углу i.

На основании теоремы косинусов для сферического треугольника

. (1.9)

Поскольку из условия незадираемости i ≤ 90°, то cosi ≥ 0, тогда из уравнения (1.9) следует

. (1.10)

Если учесть, что

, ,

то

. (1.11)

Следовательно, во всех случаях, когда касательные к отвалу плоскости окажутся наклонными к горизонту под углом θ, удовлетворяющим условно (1.11), угол i ≤ 90.

Но угол  меняется с перемещением точки m по направляющей кривой, т.е.  = f(z).

Связь между z и θ может быть установлена (рис.1.19а)

.

Рис.1.19. Схема к обоснованию максимального значения радиуса направляющей кривой

Но так как ,, то

. (1.12)

Наиболее опасной для задира пласта является точка (рис.1.19б). У более высоких точек за счет подгиба крыла вероятность задира уменьшается.

Высота точки определяется как

. (1.13)

Поскольку в точке нужно иметь уголi < 90°, то необходимо приравнять z (по уравнению 1.12) и :

;

отсюда

. (1.14)

Если R увеличить, то кривизна направляющей кривой уменьшится и угол  в точке перестает удовлетворять условию (1.11). Таким образом, R по уравнению (1.14) является максимально возможным значением, т.е.

,

где

. (1.15)

От величины радиуса направляющей кривой зависит и высота всей лемешно-отвальной поверхности, так как дуга (направляющая кривая) ограничена центральным углом. На рис.1.19 этот угол составляет 90°-ε, но в действительности он обычно бывает больше. Для обеспечения подгиба крыла, необходимого для лучшего оборота пласта, этот угол увеличивают на Δε, который у поверхностей культурного типа составляет 5...7°, а полувинтового - 8...12° (рис.1.20).

Высота расположения верхней точки А равна

.

Только на этой высоте осуществлен подгиб поверхности относительно горизонтали, что может обеспечить угол оборота пласта больше 90°. Но угол β>90° требуется обеспечить на высоте равной b, так как при угле β=90° пласт лишь становится на короткую грань, и чтобы обеспечить дальнейший его оборот на высоте b, необходимо воздействовать на него клином с углом β>90°. Итак, zA=b, отсюда

4

или

. (1.16)

Иногда высоту zA называют высотой направляющей кривой. В действительности это не так, поскольку высота направляющей кривой принципиально не может отличаться от Нmax. Поэтому в промежутке высот от zA до Нmax направляющую кривую продолжают по касательной в точке А.

Рис.1.20. Направляющая кривая

Дуга окружности не может считаться удовлетворительной формой кривой, служащей направляющей для лемешно-отвальной поверхности, так как имеет постоянную кривизну, что не способствует крошению пласта.

Обычно в качестве направляющей кривой берут параболу, построенную на основе дуги окружности (рис.1..).

Аналитическое исследование технологических свойств лемешно-отвальной поверхности потребовало определение уравнения параболы.

Подробный вывод этого уравнения приведен в учебном пособии [3].

Поскольку длина параболы больше длины дуги окружности, да кривая имеет дополнение в виде подгиба с центральным углом Δε и касательной до высоты Нmax, то подрезанный пласт может разместиться и на направляющей кривой несколько меньше радиуса, чем Rmin по уравнению (1.6).

Дополнительное исследование этой возможности, проведенное в Пермской ГСХА [3] показали, что минимальный радиус может быть сокращен до значения

,

где .

Это значение радиуса и использовано в компьютерной программе Отвал (otwal), разработанный для проектирования лемешно-отвальной поверхности [3].