Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
акустика / lin_h_bengisu_t_mourelatos_zp_lecture_notes_on_acoustics_and.pdf
Скачиваний:
84
Добавлен:
04.05.2023
Размер:
12.68 Mб
Скачать

1.9 References of Trigonometric Identities

21

(Form 4) pþðx, tÞ ¼ 21 ð 2 þ j3Þe jð4t 5xÞ

þ ð 2 j3Þe jð4t 5xÞ

Exercise 1.7

Express the following simple harmonic motion in the four equivalent forms:

p 3π xðtÞ ¼ cos 5t 4 2 sin 5t þ 4

(Answers): (You must show all your work for full credit!)

(Form 1) ¼ 3 cos 5t + 4 sin 5t (Form 2) ¼5 cos (5t 2.214)

(Form 3) ¼ 12 5e jð5t 2:214Þ þ 5e jð5t 2:214Þ

(Form 4) ¼ 12 ð 3 j4Þe j5t þ ð 3 þ j4Þe j5t

Exercise 1.8

Express the following harmonic motion in the four equivalent forms:

h i xðx, tÞ ¼ Re ð 4 þ j3Þe j45 e jð2t 5xÞ

(Answers): (You must show all your work for full credit!)

(Form 2)

5

p

 

 

 

 

3)

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Form 1)

7

2

cos

ð

2t

 

 

5x

Þ þ

 

2

sin

ð

2t

 

5x

Þ

 

 

 

 

2

 

 

 

 

2

 

 

 

 

 

(Form 4)

41

cos (2t

 

 

5x

 

e jð2t 5xÞ

 

 

 

7p2

jp2 e jð2t 5xÞ

 

 

 

7p2

 

 

jp2

 

 

 

 

(Form 3)

25

 

e jð2t 5x 3Þ þ e jð2t 5x 3Þ

 

 

 

 

þ

 

 

 

 

 

 

 

 

 

 

 

þ

 

1.9References of Trigonometric Identities

A collection of trigonometric identities is shown in this section for ease of reference. The derivations of most of these formulas are not difcult but are prone to small mistakes. The goal of this collection is to increase condence and reduce mistakes when working with trigonometric functions and complex exponential functions for harmonic motion.

1.9.1Trigonometric Identities of a Single Angle

Trigonometric identities of a single angle can be found by the unit circle:

22 1 Complex Numbers for Harmonic Functions

cos ðθÞ ¼ cos ð θÞ sin ðθÞ ¼ sin ð θÞ

Some identities of trigonometric functions can be found by playing around with the unit circle:

sin ðθÞ ¼ sin ðθ πÞ ¼ sin ðθ þ πÞ

cos ðθÞ ¼ cos ðθ πÞ ¼ cos ðθ þ πÞ

The sine of any angle is equal to the cosine of its complementary angle. The relationship between the sine and cosine of complementary angles is:

π

θ ¼ sin

θ

π

 

θ þ

π

cos ðθÞ ¼ sin 2

2 ¼ sin

2

 

π

θ

¼ cos θ

π

 

 

sin ðθÞ ¼ cos 2

2

 

 

Eulers formula:

e jθ ¼ cos ðθÞ j sin ðθÞ

or:

ejθ ¼ cos ðθÞ þ j sin ðθÞ; e jθ ¼ cos ðθÞ j sin ðθÞ

The reverse of Eulers formula:

cos ðθÞ ¼ 12 ejθ þ e jθ ¼ Re ejθ

sin ðθÞ ¼ 21j ejθ e jθ ¼ 12 jejθ je jθ ¼ Re jejθ

Sine and cosine functions can be expressed in complex exponential functions as:

cos(θ)

¼ 21

 

ejθ

þ e jθ

¼ Re

 

ejθ

 

 

 

 

 

 

 

 

 

 

sin(θ)

¼

 

 

 

 

2

 

θ

 

 

2

e

 

 

 

 

 

cc

¼

Re e

 

πÞi

 

 

 

 

 

 

π

π

 

¼

1

 

jðθ

πÞ þ

 

 

h

jðθ

 

 

 

 

 

 

 

 

 

 

 

1

 

j

 

π2

 

θ

 

 

 

 

 

 

 

j π2

θ

 

 

¼ cos θ 2

 

2

e ð 2Þ þ cc

¼ Re e ð 2Þ

 

 

 

 

cos

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin(θ)

¼

 

1

 

 

 

jθ

 

 

 

jθ¼

 

 

1

 

 

 

jθ

 

 

 

 

jθ

 

h

 

 

ijθ

2j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

e

 

¼

2

 

 

je

je

 

¼ Re je

 

¼

2

 

 

 

 

 

 

¼

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

je

 

jθ

jejθ

Re

 

jθ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

je