Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
акустика / lin_h_bengisu_t_mourelatos_zp_lecture_notes_on_acoustics_and.pdf
Скачиваний:
84
Добавлен:
04.05.2023
Размер:
12.68 Mб
Скачать

6.2 Acoustic Waves from a Pulsating Sphere

139

6.1Review of Pressure and Velocity Formulas for Spherical Waves

This section will use the spherical wave formulas from the previous section. A review of spherical wave formulas is given below.

The acoustic pressure and velocity of spherical waves in real number format and complex number format are:

p(r, t)

 

A

 

kr þ θÞ

 

 

 

 

 

 

 

 

 

 

 

 

 

¼ r cos ðωt

 

 

 

 

 

 

 

 

 

 

 

 

 

u(r, t)

¼ Ar 21 e jðωt krþθÞ þ e jðωt krþθÞ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¼

A

cos

ðωt kr þ θ ϕÞ

 

 

 

 

 

 

 

 

 

rρoc cos ðϕÞ

 

 

 

 

þ

 

Þ

 

 

¼ rρoc cos ðϕÞ

2

e

ð

 

kr

þ

 

Þ þ e ð

ωt

kr

 

 

 

A

1

 

j ωt

 

θ

ϕ

 

 

j

 

 

θ

ϕ

 

 

where:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

kr

 

 

 

 

 

 

 

1

 

tan ðϕÞ ¼

 

;

 

cos ðϕÞ ¼

 

 

;

 

sin ðϕÞ ¼

 

 

kr

 

 

1 þ ðkrÞ2

 

1 þ ðkrÞ2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

q

 

 

 

q

ðREPÞ ðCEPÞ ðREPÞ ðCEPÞ

For simplicity, this chapter will formulate in REP format only.

6.2Acoustic Waves from a Pulsating Sphere

Sound pressure and velocity radiating from a pulsating spherical source will be formulated in this section:

from a a

cos cos

cos, = cos + +

140

6 Acoustic Waves from Spherical Sources

Lets assume that the spherical source of radius a is uniformly dilating and radiating spherical waves. The vibration u(a, t) at the surface of this pulsating sphere (r ¼ a) has an amplitude of Ua, an angular frequency of ω, and a phase of θo. The velocity at the surface of the sphere provides the boundary condition for solving the velocity at any point outside the sphere:

uðr ¼ a, tÞ ¼ Ua cos ðωt þ θoÞ

At the surface of the sphere (r ¼ a), the velocity u(x, t) of the radiated wave must equal to the velocity u(a, t) of the surface of the sphere. Based on this boundary condition at the surface of the sphere, velocity and sound pressure at any point outside of the sphere can be derived and are shown below before validation:

rpðr, tÞ ¼ A cos ðωt kr þ θÞ

ruðr, tÞ ¼

 

 

A

 

 

 

 

 

 

 

 

 

cos ðωt kr þ θ ϕÞ

ρoc cos ðϕÞ

where:

 

 

 

 

A ¼ Uaρoc cos ðϕaÞa

 

 

 

 

θ ¼ ka þ θo þ ϕa

 

 

 

 

1

 

 

 

 

ka

 

 

ϕa ¼ tan 1

 

 

! cos ðϕaÞ ¼

 

 

ka

1 þ ðkaÞ2

1

 

 

 

 

q

 

 

 

 

kr

 

 

ϕ ¼ tan 1

 

! cos ðϕÞ ¼

 

 

 

kr

 

 

2

 

 

 

 

 

 

 

 

q

1 þ ðkrÞ

The following section will derive the above pressure and velocity radiating from the sphere based on the boundary condition at the surface of the sphere.

From the previous section, the general solution for the velocity of the spherical wave is:

A

uðr, tÞ ¼ rρoc cos ðϕÞ cos ðωt kr þ θ ϕÞ

where:

tan ðϕÞ ¼ kr1

To calculate the unknown constants θ and A, substitute the boundary conditions of velocity on the surface (r ¼ a) of the sphere into the above general solution as shown below: