Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
акустика / lin_h_bengisu_t_mourelatos_zp_lecture_notes_on_acoustics_and.pdf
Скачиваний:
84
Добавлен:
04.05.2023
Размер:
12.68 Mб
Скачать

3.1 Review of Partial Differential Equations

51

3.1Review of Partial Differential Equations

3.1.1Complex Solutions of a Partial Differential Equation

The acoustic wave equation is a second-order partial differential equation. The acoustic wave equation for a one-dimensional plane wave in Cartesian coordinates is:

2 pðx, tÞ ¼ 1 2 pðx, tÞ x2 c2 t2

where p is sound pressure, x is a dimension, t is time, and c is the propagation speed of sound.

It can be directly shown (see Example 3.1) that when ωk ¼ c, the following four basic complex solutions:

pðx, tÞ ¼ Ae jðωtþkxþϕÞ

pðx, tÞ ¼ Ae jðωtþkxþϕÞ

pðx, tÞ ¼ Ae jðωt kxþϕÞ

pðx, tÞ ¼ Ae jðωt kxþϕÞ

satisfy the one-dimensional acoustic wave equation of p(x, t):

2 pðx, tÞ ¼ 1 2 pðx, tÞ

x2 c2 t2

where A is an amplitude (real number) and ϕ is a phase shift. The detailed derivation will be shown in Sect. 3.2. The following example is proof of the solutions:

Example 3.1 A complex exponential function p(x, t) is given as:

pðx, tÞ ¼ Ae jðωtþkxþϕÞ

where A is the amplitude (real number) and ϕ is the phase (angle). Show that when ωk ¼ c, the above complex exponential function p(x, t) satises the one-dimensional acoustic wave equation:

2 pðx, tÞ ¼ 1 2 pðx, tÞ

x2 c2 t2

52 3 Solutions of Acoustic Wave Equation

Example 3.1 Solution Step 1: The left-hand side of the given acoustic wave equation is x22 pðx, tÞ.

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

Calculate

 

p by substituting the given function p(x, t) into

pðx, tÞ to arrive at:

x2

x2

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2 p ¼

 

x

x Ae jðωtþkxþϕÞ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h

 

 

 

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¼

 

 

 

 

njkhAe jðωtþkxþϕÞio

 

 

 

 

x

 

 

 

 

 

 

 

 

 

¼ k2hAe jðωtþkxþϕÞi

 

2

 

Step 2: The2 right-hand side of the given acoustic wave equation2

is

pðx, tÞ.

t2

Calculate

p by substituting the given function p(x, t) into

pðx, tÞ to get:

t2

t2

 

 

 

 

 

2

 

 

 

 

Ae jðωtþkxþϕÞ

 

 

 

 

 

 

 

 

t2 p ¼

 

t

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h

 

 

 

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¼

 

 

 

hjωAe jðωtþkxþϕÞi

 

 

 

 

t

 

 

 

 

 

 

 

 

 

¼ ω2hAe jðωtþkxþϕÞi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

2

 

 

 

 

 

 

 

 

 

Step 3: Substituting the calculated

p and

p into the acoustic wave equation

2

2

will give:

 

 

 

 

x

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

1

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p ¼ c2

 

 

p

 

 

 

 

 

 

 

 

 

 

 

x2

t2

 

 

 

 

 

 

 

! k2hAe jðωtþkxþϕÞi

1

ω2hAe jðωtþkxþϕÞi

 

 

 

 

 

 

 

¼

 

 

 

 

 

 

 

 

c2

 

 

 

 

 

 

 

 

 

 

!

 

 

 

k2

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¼ c2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ω2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

!

 

 

 

 

ω

¼ c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

 

 

 

 

 

 

 

 

 

 

 

 

It shows that when ωk ¼ c, the complex exponential function p(x, t) satises the one-dimensional acoustic wave equation.

3.1 Review of Partial Differential Equations

53

3.1.2Trigonometric Solutions of a Partial Differential Equation

Similar to the complex solutions of the partial differential equation covered in the previous section, it can be directly shown that when ωk ¼ c, the following four basic complex solutions:

pðx, tÞ ¼ Aþc cos

pðx, tÞ ¼ Aþs sin

pðx, tÞ ¼ A c cos

pðx, tÞ ¼ A s sin

ωt kx þ ϕþωt kx þ ϕþ

ðωt þ kx þ ϕ Þ ðωt þ kx þ ϕ Þ

satisfy the one-dimensional acoustic wave equation of p(x, t):

2 pðx, tÞ ¼ 1 2 pðx, tÞ

x2 c2 t2

where A is an amplitude (real number) and ϕ is a phase shift. The detailed derivation will be shown in Sect. 3.2.

Example 3.2 A backward traveling wave p (x, t) (Form 1:RIP) is given as:

p ðx, tÞ ¼ A s sin ðωt þ kxÞ

where A s is an amplitude. Show that if ωk ¼ c, the above trigonometric function p(x, t) satises the one-dimensional acoustic wave equation:

2 pðx, tÞ ¼ 1 2 pðx, tÞ ∂x2 c2 t2

Example 3.2 Solution Step 1: The left-hand side of the given acoustic wave equation is:

2

x2 pðx, tÞ

Calculate 2 p by substituting the given function p(x, t) into 2 pðx, tÞ to get:

x2 x2