Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
акустика / lin_h_bengisu_t_mourelatos_zp_lecture_notes_on_acoustics_and.pdf
Скачиваний:
84
Добавлен:
04.05.2023
Размер:
12.68 Mб
Скачать

134

5 Solutions of Spherical Wave Equation

imaginary number; when kr 1, ϕ 0, z ¼ ρoc is a real number and is the same as a plane wave.

5.7Homework Exercises

Exercise 5.1

Acoustic pressure magnitude P0 of a spherical wave is given as 4.149 [Pa] at 1 [m] from the center of a source. If the wavelength is 0.1 [m], answer the following questions, and show units in the Meter-Kilogram-Second (MKS) system:

a)What is the particle velocity magnitude at any point in space?

b)What is the acoustic pressure magnitude at any point in space?

c)What is the acoustic intensity at 1 and 25 [m] from the center of the source?

d)What is the phase difference between the pressure and ow velocity of the sphere wave at 1 and 25 [m]?

Use 415 [rayls] for the characteristic impedance (ρ0c) of air. (Answers):

p

a) The velocity magnitude U

0:0001591

1þ

3948r2

[m/s]

 

2

r ¼

 

r

 

 

b)The pressure magnitude at r: Pr ¼ 4:149r [Pa]

c)The acoustic intensity at r ¼ 1 [m]: 0.02074 [ w/m2]

The acoustic intensity at r ¼ 25 [m]: 0.00003318 [w/m2]

d) The phase difference at r ¼ 1 [m]: ϕ1 ¼ 0.01591 rad ¼ 0.9118 [Deg] The phase difference at r ¼ 25 [m]: ϕ25 ¼ 0.00064 rad ¼ 0.0365 [Deg]

Exercise 5.2

The acoustic pressure magnitude from a spherical source, measured at 10 m from the center of the source, is 0.8 Pa. If the frequency of radiation is 250 Hz:

a)What is the surface velocity magnitude of the source if the source radius is 0.05 [m]?

b)What is the acoustic pressure magnitude on the surface of the source?

Use 415 [rayls] for the characteristic impedance (ρ0c) of air and 340 ms for the speed of sound (c) in air.

(Answers): (a) 1:713 ms ; (b) 160[Pa]

Exercise 5.3

Flow velocity magnitude U0 of a spherical wave is given as 0.02 [m/s] at 2 [m] from the center of a source. If the frequency is 1700 [Hz].

5.7 Homework Exercises

135

a)What is the ow velocity magnitude at any point in space?

b)What is the acoustic pressure magnitude at any point in space?

c)What is the acoustic intensity at 5 [m] from the center of the source?

Use 415 [rayls] for the characteristic impedance (ρ

 

 

m

for the

speed of sound (c) in air.

 

 

r

 

s

0c) of air and 340

s

 

m

 

 

r

½ &

 

 

 

 

3 p

100π2r2

 

 

 

 

 

(Answers): (a) 1:2731 10

 

1þ 2

 

m ; (b) 16:598

Pa ; (c) 0:0133

 

w

 

 

 

2

Exercise 5.4

Derive the complex ow velocity u(r, t) from the following complex sound pressure p(r, t) using Eulers force equation:

 

pðr, tÞ ¼

A

ðCEPÞ

Pressure :

r e jðωt krþθÞ

Hint: The ow velocity u(r, t) can be obtained by nding the integral of the derivative of the pressure p(r, t) in the Eulers force equation shown below:

Euler0s force equation :

 

 

 

 

pðr, tÞ ¼ ρo

 

uðr, tÞ

r

t

(Answers): Flow velocity : u r, t

 

 

 

A

e jðωt krþθ ϕÞ

Þ ¼ rρoc cos ϕ

ð

 

 

 

Exercise 5.5

Derive the complex ow velocity u(r, t) from the following complex sound pressure p(r, t) using Eulers force equation:

 

 

A

 

 

 

Pressure :

pðr, tÞ ¼

 

e jðωt krþθÞ

ðCEPÞ

r

(Answers): Flow velocity : u r, t

 

A

e jðωt krþθ ϕÞ

Þ ¼ rρoc cos ϕ

 

 

ð

 

Chapter 6

Acoustic Waves from Spherical Sources

In the previous chapter, formulas for sound pressure, ow velocity, acoustic intensity, and specic acoustic impedance were formulated in spherical coordinates. Note that in the previous chapter, the formulas are just general solutions and are not based on any physical source. In this chapter, you will learn how to calculate sound pressure radiated from a spherical source of different radii. Note that this spherical source has physical quantities such as radius and surface vibration velocity.

The end goal of this chapter is to obtain the formula for calculating sound pressure radiating from a point source. Even though this formula is derived from a spherical source with physical quantities of radius and velocity, the radius is actually eliminated in this formula which makes it possible to model any shape for vibration surfaces. The formula for acoustic waves from a point source is summarized below and in the table on the next page:

 

 

 

ρ ck

 

 

π

 

pðr, tÞ ¼

 

o

Qs cos ωt kr þ θo þ

2

 

 

4πr

 

 

 

k

 

 

π

 

uðr, tÞ ¼

 

Qs cos ωt kr þ θo þ 2

ϕ

4πr cos ðϕÞ

where Qs is the source strength and is dened as:

Z

Qs Unds ¼ 4πa2Ua

s

This formula can be used for numerical calculations of sound pressure radiating from an arbitrary vibrating surface. The vibrating surface is numerically modeled as a large number of singular point sources. Each point source has a source strength representing the vibration power of its corresponding vibration surface. This technique is used in the project in this chapter.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

137

H. Lin et al., Lecture Notes on Acoustics and Noise Control, https://doi.org/10.1007/978-3-030-88213-6_6

138

6 Acoustic Waves from Spherical Sources

To obtain the formulas for point sources, we will follow the three formulas as described below:

Formula 1: Formula for a pulsating spherical source with an arbitrary radius a Formula 2: Formula for a pulsating spherical source with a small radius (a 1) Formula 3: Formula for a point source with a zero radius (a ¼ 0)

Each formula is developed based on the previous formula. For example, Formula 3 is based on Formula 2; Formula 2 is based on Formula 1; Formula 1 is based on the general spherical wave derived in the previous chapter.

The following is a summary of formulations of acoustic waves from a spherical source that will be derived in this chapter:

Source types

 

 

 

Pressure: p(r, t)

 

 

Velocity: u(r, t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

General spherical

 

 

rp(r, t)

 

 

 

 

 

 

 

ruðr, tÞ ¼

 

 

 

A

 

 

cos ðωt kr þ θ ϕÞ

 

 

 

 

 

 

 

 

 

ρo c cos ðϕÞ

wave

 

 

 

 

 

 

¼

A cos (ωt

 

kr + θ)

 

 

 

 

 

 

 

 

where

ϕ

¼

tan 1

 

1

!

cos

ϕ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kr

 

 

 

 

 

 

 

 

 

 

 

where r is the distance

 

 

kr

 

 

 

 

 

 

 

 

 

ð Þ ¼

 

 

 

 

 

 

 

 

 

 

from the origin of the

 

p1þðkrÞ2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

coordinate

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A and θ are determined by

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pulsating spherical

 

 

rp(r, t)

 

 

 

 

 

 

 

ruðr, tÞ ¼

 

 

 

A

 

 

cos ðωt kr þ θ ϕÞ

 

 

 

 

 

 

 

 

 

ρo c cos ðϕÞ

source of radius a

 

 

¼

A cos (ωt

 

kr + θ)

 

 

 

 

where

ϕ

¼

tan

1

 

1

 

 

 

 

 

Based on BC:

 

 

 

 

 

 

 

 

 

 

 

 

kr

 

 

 

 

 

 

 

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u(a,

 

a

 

 

o

)

A ¼ Uaρoc cos (ϕa)a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t)

¼

 

 

 

 

¼

ka +

1

1

ϕa

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U

cos (ωt + θ

θ

 

θo

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ϕa ¼ tan

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ka

ka

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

! cos ðϕaÞ ¼

p1þðkaÞ2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Small pulsating

 

 

rp(r, t)

 

 

 

 

 

 

ruðr, tÞ ¼

 

 

 

A

 

 

cos ðωt kr þ θ ϕÞ

 

 

 

 

 

 

 

ρo c cos ðϕÞ

spherical source if

 

 

¼A cos (ωt kr + θ)

 

 

 

 

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ka

 

 

1

 

 

 

 

 

where

 

 

 

 

2

 

 

ϕ

¼

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

Based on BC:

 

 

 

A

 

Ua ρoc ka

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tan 1

 

kr

 

 

 

 

 

 

 

 

 

 

u(a, t)¼ Ua cos (ωt + θo)

 

 

 

π

 

 

 

 

 

Near

 

eld:

 

 

 

 

 

 

 

 

Far eld:

 

θ θo þ

2

 

 

 

 

 

kr 0

 

 

 

 

 

 

 

 

 

 

kr 1

 

!

ka

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kr

 

 

 

 

 

 

 

1

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ϕ)

 

 

 

 

 

 

 

 

cos(ϕ)

 

! ϕa 2

 

ka

 

 

 

 

 

 

 

 

 

 

 

 

cos(

π

 

 

 

 

 

 

 

 

 

 

 

 

 

!

cos (ϕa)

 

 

 

 

 

 

 

 

 

 

 

 

 

ϕ

2

(out of phase)

 

ϕ 0 (in phase)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Point source

 

 

 

rp(r, t)

 

 

 

 

 

 

 

ruðr, tÞ ¼

 

 

 

A

 

 

cos ðωt kr þ θ ϕÞ

 

 

 

 

 

 

 

 

 

 

ρo c cos ðϕÞ

Based on BC:

 

 

 

 

A cos (ωt

 

 

kr + θ)

 

 

 

 

 

 

 

 

where

ϕ

¼

tan 1

 

1

 

 

 

 

 

u(a, t) Ua cos (ωt + θo)

where A

 

Qs

o4π

 

 

 

 

 

 

 

 

 

 

 

¼

 

 

 

 

 

¼

 

 

¼π

 

ρ c k

 

 

 

 

kr

 

 

 

 

 

 

 

 

 

 

 

2

Ua

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Qs R sUnds ¼ 4πa

 

θ ¼ θo þ 2