Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
акустика / lin_h_bengisu_t_mourelatos_zp_lecture_notes_on_acoustics_and.pdf
Скачиваний:
81
Добавлен:
04.05.2023
Размер:
12.68 Mб
Скачать

4.7 Homework Exercises

111

function [pressure,velocity]=getStandingWave(A,w,k,Time,XDir,phi)

% ps(t,x)=P+(t,x)+p-(t,x)

 

%

=A cos(wt-kx+phi)+A cos(wt+kx+phi)

(Form 2)

%=2A cos(wt+phi)*cos(kx) --- see the homework Problem 3.4

%modify the following two lines for the pressure and velocity

%assume loc=0

pressure=0; % pressure of standing wave

 

velocity=0; % velocity of standing wave

 

end

 

% from Project 9.1.1

 

function [A, phi]=get_A_and_phi(Ac, As)

 

% p(t) = Ac cos(wt) + As sin(wt)

(Form 1)

% = A cos(wt + phi)

(Form 2)

A=(Ac^2+As^2)^(1/2);

 

phi=atan2(As,Ac);

 

end

 

4.7Homework Exercises

Exercise 4.1 (Traveling Wave with Known Velocity)

Use one of the harmonic motions shown below (chosen by the instructor) as the velocity u(t) to answer every question of this exercise (ac):

i.uðtÞ ¼ U0 sin ωt π2 ; U0 is a real number.

ii.u(t) ¼ Re (U0e j(ωt π)); U0 is a real number.

iii.uðtÞ ¼ U0 cos ωt þ π2 ; U0 is a real number.

iv. uðtÞ ¼ Re U0e jðωtþπ2Þ ; U0 is a real number.

A large, rigid wall is vibrating with a velocity u(t) perpendicular to its planar surface. The motion of the wall creates plane waves that propagate into the air. Consider the particle velocity of the plane wave on the surface of the wall (x ¼ 0) to be equal to the velocity of the wall:

= 0

a)Obtain the expressions for the ow velocity at any point in space (not just on the wall surface) of the plane wave radiating from the wall in terms of the wall vibration velocity.

112

4 Acoustic Intensity and Specic Acoustic Impedance

b)Obtain the expressions for the sound pressure at any point in space (not just on the wall surface) of the plane wave radiating from the wall in terms of the wall vibration velocity.

c)What is the root-mean-square (RMS) pressure at any point in space if the wall velocity U0 ¼ 0.01 m/s.

Use 415 rayls for the characteristic impedance of air. (Answers):

i, ii

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

q½

 

 

&

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Uo sin

ωt

 

kx

 

π

 

; (b) ρoc Uo sin

 

ωt

 

 

kx

 

 

π

 

; (c)

 

ð4:15Þ2

Pa

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

2

 

 

 

 

iii, iv

 

 

 

 

þ

 

 

 

 

 

 

 

 

 

þ

 

 

 

 

q½

 

 

&

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Uo cos

 

ωt

 

kx

 

π

; (b) ρoc Uo cos

 

ωt

 

 

kx

 

 

π

; (c)

ð4:15Þ2

 

Pa

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

2

 

 

2

 

 

 

 

Exercise 4.2 (Traveling Wave with Known Velocity)

Use the following harmonic motion u(t) as velocity to answer every question of this exercise:

 

π

m

uðtÞ ¼

Re 0:02 e jðωtþ2Þ

h

 

i

s

A large, rigid wall is vibrating with a velocity u(t) perpendicular to its planar surface. The motion of the wall creates plane waves that propagate into the air. Considering the particle velocity of the plane wave on the surface of the wall (x ¼ 0) would be equal to the velocity of the wall:

=

a)Obtain the expressions for the ow velocity at any point in space (not just on the wall surface) of the plane wave radiating from the wall in terms of the wall vibration velocity.

b)Obtain the expressions for the sound pressure at any point in space (not just on the wall surface) of the plane wave radiating from the wall in terms of the wall vibration velocity. Use 415 rayls for the characteristic impedance of air.

c)What is the root-mean-square (RMS) pressure at any point in space?

Use 415 rayls for the characteristic impedance (ρoc) of air.

4.7

Homework Exercises

113

 

(Answers): (a) 0:02 cos ωt kx þ π2 ms ; (b)

8:3 cos ωt kx þ π2 ½Pa&;

 

q

 

 

(c)

ð8:23Þ2

½Pa&

 

Exercise 4.3 (Traveling Wave with Known Pressure)

Use one of the traveling waves shown below (chosen by the instructor) to answer every question of this exercise (ae):

p ðx, tÞ ¼ P0 cos ωt þ kx þ

π

2

pþðx, tÞ ¼ P0 cos ðωt kx þ πÞ pþðx, tÞ ¼ P0 sin ðωt kx πÞ

a.Obtain the expressions for the particle velocity at any point in space.

b.What is the RMS pressure of the wave at any point in space?

c.What is the RMS ow velocity of the wave at any point in space?

d.What is the acoustic intensity of the wave at any point in space?

e.What is the specic acoustic impedance of the wave at any point in space? (Answers):

i. (a) 1

P0 cos

ωt

þ

kx

þ

π

; (b)

1

Po

; (c)

 

 

1

 

 

 

Po ; (d) 1

Po2

; (e)

 

ρ0c [ray]

p2ρoc j

 

 

o

c

 

 

 

 

 

2

 

 

p2 j

 

j

 

 

 

 

 

j

 

P2

 

0

c

 

 

 

 

ρ

 

 

 

 

 

kx

 

π ; (b)

 

 

o

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

ρ

 

 

 

 

ii. (a)

P0

cos

 

 

 

 

1

 

 

; (c)

 

1

 

 

 

o

 

 

; (d) 1

 

 

 

; (e) ρ

c [ray]

 

ð

ωt

 

 

þ Þ

 

 

 

P

 

 

 

 

 

 

 

P

 

 

 

 

 

ρoc

 

 

 

 

 

p2ρoc j

j

 

 

 

iii. (a)

sin

 

kx

 

 

p2 j

 

j

 

 

 

2 ρ0c

 

 

 

0

 

 

 

 

0

ωt

 

π ; (b) 1

Po ; (c)

 

 

 

 

 

 

Po

 

; (d) 1

 

o

; (e) ρ c [ray]

 

P

 

 

 

ð

 

Þ

 

 

 

j j

 

 

1

 

 

 

j j

 

 

P2

 

 

 

0

 

 

 

 

o

c

 

 

 

 

 

 

 

 

 

 

o

 

 

2

0

c

 

 

 

 

 

 

 

ρ

 

 

 

 

 

 

 

 

 

 

p2

 

 

 

 

 

p2ρ

 

c

 

 

 

 

 

ρ

 

 

 

 

 

 

Exercise 4.4 (Standing Wave Pattern)

Use one of the combinations of a forward traveling wave p+(x, t) and a backward traveling wave p (x, t) shown (chosen by the instructor) to answer every question of this exercise (af):

pþðx, tÞ ¼ A cos ðωt kxÞ ¼

1

Ae jðωt kxÞ þ Ae jðωt kxÞ

 

2

p ðx, tÞ ¼ A cos ðωt þ kxÞ ¼

1

Ae jðωtþkxÞ þ Ae jðωtþkxÞ

 

 

2

pþðx, tÞ ¼ A cos ðωt kxÞ ¼

1

Ae jðωt kxÞ Ae jðωt kxÞ

 

 

2

p ðx, tÞ ¼ A cos ðωt þ kxÞ ¼

1

Ae jðωtþkxÞ þ Ae jðωtþkxÞ

 

 

2

1

jAe jðωt kxÞ þ jAe jðωt kxÞ

pþðx, tÞ ¼ A sin ðωt kxÞ ¼

 

2