Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
акустика / lin_h_bengisu_t_mourelatos_zp_lecture_notes_on_acoustics_and.pdf
Скачиваний:
84
Добавлен:
04.05.2023
Размер:
12.68 Mб
Скачать

4.2 RMS Pressure

89

Example 4.4

Use Eulers force equation to get the ow velocity u+(x, t) from the given pressure as shown below:

 

 

 

 

 

 

 

 

pþðx, tÞ ¼ e jðωt kxÞ

 

 

 

 

Example 4.4 Solution

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pþðx, tÞ ¼ jk e jðωt kxÞ

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

uþðx, tÞ ¼

1

Z

 

1

Z

jk e

jðωt kxÞ

dt

 

ρo

x p 2

ðx, tÞ dt ¼ ρo

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h

i

 

 

 

¼

k

 

e jðωt kxÞ ¼

1

e jðωt kxÞ ¼

 

1

pþðx, tÞ

 

 

 

 

 

 

 

 

 

 

 

ρoω

ρoc

ρoc

 

 

Based on the two examples above, we can conclude that:

1

u ðx, tÞ ¼ ρoc p ðx, tÞ

Remark:

Note that for general complex waves, there are no linear relationships between pressure and velocity:

x, tÞ 6¼

1

x, tÞ 6¼

1

x, tÞ

ρoc

ρoc

4.2RMS Pressure

The root-mean-square (RMS) pressure is dened as:

Z T

p2RMS T1 0 p2dt

where T is the period of the pressure wave.

Formulas of RMS pressure for traveling waves p (x, t) and standing waves ps(x, t) will be developed based on the denition of RMS pressure shown above. The following is a summary of formulas of RMS pressure that will be derived in this section:

90 4 Acoustic Intensity and Specic Acoustic Impedance

2

 

 

A2

 

 

 

 

[BTW]

p RMS

2

 

 

 

 

[BSW]

psRMS2

¼

A2

 

cos 2ðkxÞ if

psðx, tÞ ¼ A cos ðωtÞ cos ðkxÞ

2

2

¼

A2

 

sin

2

ðkxÞ if

psðx, tÞ ¼ A sin ðωtÞ sin ðkxÞ

[BSW]

psRMS

2

 

 

[BSW]

2

¼

A2

 

sin

2

ðkxÞ if

psðx, tÞ ¼ A cos ðωtÞ sin ðkxÞ

psRMS

2

 

 

[BSW]

psRMS2

¼

A2

 

cos 2ðkxÞ if

psðx, tÞ ¼ A sin ðωtÞ cos ðkxÞ

2

4.2.1RMS Pressure of BTW

The RMS pressure of traveling waves is dened as follows:

pþ2

RMS

A2

2

p2

RMS

A2

2

where A is the amplitude of the traveling waves of the four basic traveling waves:

p ðx, tÞ ¼ A cos ðωt þ kxÞ pþðx, tÞ ¼ A cos ðωt kxÞ p ðx, tÞ ¼ A sin ðωt þ kxÞ pþðx, tÞ ¼ A sin ðωt kxÞ

The following is an example of validating these relationships:

For forward traveling wave p+(x, t) ¼ cos (ωt kx), the RMS pressure is by denition:

pRMS2 T Z0

T

p2dt ¼ T Z0

T

 

ðA cos ðωt kxÞÞ2dt

1

 

 

1

 

 

For general traveling waves, RMS pressure is independent of the choice of location. Therefore, we can calculate the square of RMS pressure at x ¼ 0. Therefore:

pRMS2 ¼ A2

T Z0

T

cos 2ðωtÞdt

 

1

 

 

Because ω ¼ 2Tπ, replace ω with 2Tπ to get:

4.2 RMS Pressure

 

 

 

 

 

 

91

pRMS2

¼ A2

1

Z

T

cos 2

2π

 

 

t dt

 

 

 

T

 

T

 

 

 

0

 

 

 

 

This means that the square of RMS pressure is an integral over a period 2π. Note that the geometry relationship is used to yield:

pRMS2

¼ A2

1

Z

T

cos 2

2π

t

dt ¼ A2

1

¼

A2

T

0

 

T

2

2

 

 

 

 

 

 

 

 

 

 

 

4.2.2 RMS Pressure of BSW

The square of the RMS pressure of standing waves can be illustrated as:

psðx, tÞ ¼ A cos ðωtÞ cos ðkxÞ ! psRMS2

¼

 

A2

cos 2ðkxÞ

 

2

psðx, tÞ ¼ A sin ðωtÞ sin ðkxÞ ! psRMS2

¼

A2

sin 2ðkxÞ

2

psðx, tÞ ¼ A cos ðωtÞ sin ðkxÞ ! psRMS2

¼

 

A2

sin 2ðkxÞ

 

2

psðx, tÞ ¼ A sin ðωtÞ cos ðkxÞ ! psRMS2

¼

A2

cos 2ðkxÞ

2

The following is an example to validate one of the above relationships between pressure and RMS pressure:

The square of the RMS pressure is dened as:

PRMS2 ¼ T

Z0

T

p2 dt ¼ T Z0

T

 

ðA cos ðωtÞ cos ðkxÞÞ2 dt

1

 

1

 

 

Bringing the time-independent function cos(kx) outside of the integral yields:

 

 

1

Z0

T

A2

PRMS2

¼ A2 cos 2

ðkxÞ

 

cos 2ðωtÞdt ¼

 

cos 2ðkxÞ

T

2

 

PRMS ¼

 

A

 

 

 

p2 cos ðkxÞ

 

 

92

4 Acoustic Intensity and Specic Acoustic Impedance

Example 4.5 (Traveling Wave with Known Velocity)

Use the following harmonic motion as velocity u(t) to answer every question of this problem:

uðtÞ ¼ Vo cos ωt þ

π

2 ; Vo is a real number:

A large, rigid wall is vibrating with a velocity u(t) perpendicular to its planar surface. The motion of the wall creates plane waves that propagate into the air. Considering that the ow velocity of the plane wave on the surface of the wall (x ¼ 0) would be equal to the velocity of the wall:

= 0

a)Obtain the expressions for the ow velocity at any point in space (not just on the wall surface) of the plane wave radiating from the wall in terms of the wall vibration velocity.

b)Obtain the expressions for the sound pressure at any point in space (not just on the wall surface) of the plane wave radiating from the wall in terms of the wall vibration velocity.

c)What is the root-mean-square (RMS) pressure at any point in space if the wall velocity Vo ¼ 0.01 m/s.

Example 4.5 Solution

a) The general solution of the forward plane wave with an amplitude of A:

uðx, tÞ ¼ A cos ðωt kx þ θÞ

Find the unknown amplitude A and phase delay θ

by the given boundary

conditions at x ¼ 0:

 

 

 

uðx ¼ 0, tÞ ¼ Vo cos ωt þ

π

 

 

2

 

Substituting the boundary condition into general solution yields:

4.2 RMS Pressure

 

 

 

93

Vo cos ωt þ

π

¼ A cos ðωt þ θ Þ

 

2

 

Hence:

 

 

 

 

 

 

θ ¼

π

ðandÞ

 

 

2

A ¼ Vo,

Therefore, the general expression of the particle velocity at any point to the right of the wall is:

uðx, tÞ ¼ Vo cos ωt kx þ

π

2

b)The acoustic pressure can be calculated from the ow velocity using Eulers force equation.

For a forward traveling wave, the acoustic pressure is related to the ow velocity as follows:

pþðx, tÞ ¼ ρoc uðx, tÞ

 

 

 

 

π

¼ ρocVo cos ωt kx þ

2

c) Substituting the following known variables:

 

 

 

 

 

Vo ¼ 0:01

m

 

 

 

 

 

 

 

 

 

 

 

 

s

 

 

 

 

 

 

 

 

 

s

 

 

ρoc ¼ 415 ½rayles& or hPa

 

i

 

 

m

 

 

into pressure function p(x, t) above yields:

 

 

 

 

 

pþðx, tÞ ¼ 4:15 cos ωt kx þ

π

½Pa&

 

2

 

For traveling waves, forward or backward, the RMS pressure is independent of space.

Hence:

 

PRMS2

¼

1

ð4:15Þ2

Pa2

 

 

2

 

 

 

r

 

 

 

!

PRMS

¼

 

 

ð4:15Þ2

½

Pa

&

 

 

 

2