Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
акустика / lin_h_bengisu_t_mourelatos_zp_lecture_notes_on_acoustics_and.pdf
Скачиваний:
84
Добавлен:
04.05.2023
Размер:
12.68 Mб
Скачать

150

 

 

 

 

6 Acoustic Waves from Spherical Sources

 

 

ρ ck

 

π

 

pðr, tÞ ¼

 

o

QH cos ωt kr þ θo þ 2

 

 

2πr

 

 

 

k

 

π

 

uðr, tÞ ¼

 

QH cos ωt kr þ θo þ 2

ϕ

2πr cos ðϕÞ

Therefore, it requires only half of the source strength to produce the same pressure eld as a full spherical pressure eld. In other words, if the same source strength is put on the half space, half of the source strength will be reected to the half space and produce twice the pressure eld in the full spherical space created by the same source strength.

6.5Acoustic Intensity and Sound Power

Sound intensity I is the acoustic intensity, formulated in the previous section as:

 

1

T

 

1 A2

ρoc k

2 Qs2

IðrÞ

 

 

Z0

ðpuÞdt ¼

 

 

 

¼

 

 

 

 

 

 

T

2ρoc

r2

2

4π

 

r2

where A was calculated for a point source as:

A ¼ Qs ρoc k

4π

For a spherical source with radius r ¼ a , acoustic intensity I is constant on the surface of the sphere. Therefore, sound power can be formulated without integration:

Z

w IðrÞ ds

s

¼ 4πa2Iðr ¼ aÞ

¼ 4πa

2 1

 

A2

2πA2

ρock2 2

½w&

 

 

 

 

¼

 

¼

 

Qs

 

2

r2ρoc

ρoc

8π

Even though the above formula for sound power is formulated at r ¼ a, this formula is valid for any other choice of surface for integration. It makes sense because the sound power is the total radiation energy of the source and will not vary with the choices of the surface for integration. This can be checked by comparing the above sound power, at r ¼ a, to the sound power at r ¼ 2a as shown below:

6.5 Acoustic Intensity and Sound Power

151

 

 

1

 

 

2

 

2πA2

w Z

I ds ¼ 4πð2aÞ2Iðr ¼ 2aÞ ¼ 4πð2aÞ2

 

 

A

 

¼

ρoc

2

2

ρoc

 

s

 

ð2aÞ

 

 

 

Example 6.2 (A Point Source)

An acoustic pressure p(r, t) is created by a surface vibration of a spherical source with a radius a ¼ 1001 ½m&. Given the surface velocity of the sphere as:

 

1

 

m

1

 

m

uðr ¼ a, tÞ ¼ Ua cos 2πft

 

π h

 

i

¼ Re Uae jðωt 2

πÞ h

 

i

2

s

s

where the surface velocity is Ua ¼ 20 [m/s] and frequency of radiation is f ¼ 680 [Hz].

Assuming that this spherical source can be treated as a point source, calculate

(a) the source strength, (b) ow velocity, (c) acoustic pressure, (d) intensity, and

(e) power radiating from the point source.

Use 415 [rayls] for characteristic impedance (ρ0c) of air and 340 [m/s] for the speed of sound in air. Show units in the Meter-Kilogram-Second (MKS) system.

Example 6.2 Solution

Similar to Example 6.1, the angular frequency can be calculated as:

ω ¼ 2πf ¼ 2π 680 h1si ¼ 1360π h1si

And the wave number can be calculated as:

k c

 

c

 

 

 

 

m

s

 

 

4π m

¼

ω

 

2πf

2π

 

680

1

 

h

1

i

 

¼

 

¼

 

 

 

 

 

¼

 

 

 

 

340

s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compare the given surface velocity of the sphere:

 

1

m

uðr ¼ a, tÞ ¼ Ua cos 2πft

 

π h

 

i

2

s

to the boundary condition of a small pulsating spherical source in the summary table below:

Source types

Pressure: p(r, t)

 

 

 

Velocity: u(r, t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Point source

rp(r,

 

 

 

 

 

 

ruðr, tÞ ¼

 

 

A

 

cos ðωt kr þ θ ϕÞ

 

 

 

 

 

 

ρo c cos ðϕÞ

Based on BC:

t) ¼ A cos (ωt kr + θ)

 

 

where

ϕ

¼

tan 1

 

1

;

cos

ϕ

 

 

 

kr

u(a, t)

¼

 

where A

¼

Qs ρo4cπ k;

θ

¼

 

kr

 

 

 

 

 

 

 

ð Þ ¼

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p1 kr

 

 

 

 

 

 

 

 

 

 

 

Ua cos (ωt + θo)

θo 2

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

Qs ¼

2

Ua

þ

 

 

 

 

 

 

þð

Þ

 

 

 

 

 

 

 

 

 

 

4πa

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

152

6 Acoustic Waves from Spherical Sources

Comparing the given boundary condition to the formulas in the summary table above gives:

a ¼ 1001 ½m&

Ua ¼ 20[m/s]

π

θo ¼ 2

Part (a)

When this source is modeled as a point source, the source strength is given by:

Qs ¼ 4πa2Ua ¼ 4π ∙ 0:012 20 ¼ 0:0251 m3 s

Part (b)

The formula of the velocity from a point source is shown in the summary table as:

uðr, tÞ

 

A

 

 

 

cos ðωt kr þ θ ϕÞ

r ρoc cos ðϕÞ

where:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

¼

Q

ρoc k

 

¼

0:0251

415 4π

¼

10:4

4π

 

 

s

 

 

 

 

 

4π

 

 

 

 

θ ¼ θo þ

π

π

π

 

 

 

 

 

2 ¼

2

þ 2 ¼ 0

 

Therefore:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uðr, tÞ

 

 

A

 

 

 

 

cos ðωt kr þ θ ϕÞ

 

 

 

r ρoc cos ðϕÞ

 

¼

 

 

10:4

 

 

 

cos

ð1360πt 4πr ϕÞ

 

415 r cos ðϕÞ

 

 

0:0251

cos ð1360πt 4πr ϕÞ

 

¼

 

 

 

r

cos ðϕÞ

where:

6.5 Acoustic Intensity and Sound Power

153

ϕ ¼ tan 1 1 kr

Part (c)

The formula for the acoustic pressure from a point source is shown in the summary table as:

pðr, tÞ ¼ Ar cos ðωt kr þ θÞ

¼ 10r:4 cos ð1360πt 4πrÞ

Part (d)

Acoustic intensity:

 

 

 

 

 

ρoc k

 

 

2

Qs2

 

 

w

 

 

 

 

 

IðrÞ ¼

 

 

 

 

 

 

 

h

 

 

i

 

 

 

 

 

 

2

4π

 

 

r2

m2

 

 

 

 

415

4π 2

0

02512

 

w

 

 

0 131

 

w

¼

 

 

 

 

 

:

hm2i ¼

 

:

h

 

i

2

4π

 

r2

r2

m2

Part (e)

Sound power:

w

¼

 

ρock2

Q2

w

415 ð4πÞ2

0:02512

w

1:65 w

 

8π

 

 

s

½ & ¼

8π

 

½ & ¼

½ &

Remarks

The results show that the acoustic quantities calculated from a small spherical formulation (Example 6.1) and a point source formulation (Example 6.2) are identical, as expected.

For a small sphere, the constant A is calculated by comparing the magnitudes of the velocity:

 

A

 

k

 

¼

 

Qs

 

rρoc cos ðϕÞ

4πr cos ðϕÞ

to arrive at:

154

 

 

 

6 Acoustic Waves from Spherical Sources

A ¼

ρock

Qs ¼

415 4π

0:0251 ¼ 10:4

4π

4π

This shows that the constant A calculated from a point source is the same or close to the value calculated from a small spherical source. Therefore, we can conclude that this spherical source can be modeled as a point source.

Example 6.3

The rectangular plate has the width Lx and the height Ly with the following given dimensions:

Lx ¼ 0:8 ½m&

Ly ¼ 0:6 ½m&

= cos 2 +

Use m × n point sources

m=2 (x-direction) n=2 (y-direction)

at (0.1, 0, 0.1) [m]

= 0.8 [m]

̂

= 0.6 [m]

Drawing not to scale

 

 

Assume that this plate vibrates at frequency f and the amplitude U of surface velocity is:

f ¼ 340 ½Hz&

hmi

U ¼ 20 s

θo ¼ 0 ½rad&

Therefore, the surface velocity is:

hmi uðtÞ ¼ U cos ð2πftÞ ¼ 20 cos ð2π 340 tÞ s

6.5 Acoustic Intensity and Sound Power

155

We will equally divide the rectangular plate into m sections in the x-direction and n sections in the y-direction. The values of m and n are:

m ¼ 2;

n ¼ 2

Calculate (a) sound pressure and (b) ow velocity (three components) generated by surface vibration of the plate at Point A (0.1, 0, 0.1) [m].

Use 415 [rayls] for characteristic impedance (ρ0c) of air and 340 [m/s] for the speed of sound in air. Show units in the Meter-Kilogram-Second (MKS) system.

You can use the function POINTSOURCE (in Sect. 6.6) for calculating sound pressure and ow velocity of a vibration plate. Or you can implement this function using your preferred tool such as Python or Excel spreadsheet.

Example 6.3 Solution

We will equally divide the rectangular plate into m sections in the x-direction and n sections in the y-direction. The values of m and n are:

m ¼ 2;

n ¼ 2

Each divided piece has the same dimension as:

x ¼

Lx

¼

0:8

½m& ¼ 0:4 ½m&

 

 

m

2

 

 

y ¼

Ly

¼

0:6

½m& ¼ 0:3 ½m&

 

 

n

2

s

Qs ¼ x y U ¼ 0:4 0:3 20 ¼ 2:4

 

 

 

 

 

 

m3

Due to the hemispherical point source, the source strength is doubled as:

QH ¼ Qs 2

Use a time resolution of t ¼ 0.0001 [s] for the time history plot.

The locations of the point sources are user-dened arguments in the main program as:

src(1,:)=[-0.2, 0.15, 0, 2.4]; % sx,sy,sz,Qs src(2,:)=[ 0.2, 0.15, 0, 2.4]; % sx,sy,sz,Qs src(3,:)=[-0.2,-0.15, 0, 2.4]; % sx,sy,sz,Qs src(4,:)=[ 0.2,-0.15, 0, 2.4]; % sx,sy,sz,Qs

The location of Point A is also a user-dened argument in the main program as:

x=0.1; y=0 ; z=0.1; % [m] Point A

156

6 Acoustic Waves from Spherical Sources

The function POINTSOURCE.m and the main program VibrationPlate.m of this example can be found on Moodle.

The outputs of the rst 11 time steps are:

time [s]

pressure [Pa]

velocity x [m/s]

velocity y [m/s]

velocity z [m/s]

 

 

 

 

 

0.0000

13902.74

6.87

0.00

15.36

 

 

 

 

 

0.0001

13738.71

5.46

0.00

16.93

 

 

 

 

 

0.0002

12950.06

3.80

0.00

17.74

0.0003

11572.66

1.97

0.00

17.73

0.0004

9669.12

0.05

0.00

16.92

 

 

 

 

 

0.0005

7325.99

1.87

0.00

15.34

 

 

 

 

 

0.0006

4649.79

3.71

0.00

13.07

0.0007

1762.19

5.38

0.00

10.19

0.0008

1205.52

6.81

0.00

6.86

 

 

 

 

 

0.0009

4118.43

7.92

0.00

3.21

 

 

 

 

 

0.0010

6844.10

8.68

0.00

-0.58

 

 

 

 

 

The output of the rst 51 time steps can be plotted as: