Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
акустика / lin_h_bengisu_t_mourelatos_zp_lecture_notes_on_acoustics_and.pdf
Скачиваний:
81
Добавлен:
04.05.2023
Размер:
12.68 Mб
Скачать

9.2 Sound Pressure Levels

 

 

 

 

 

 

 

 

235

 

 

2

 

 

 

3

 

! ½dB&

 

 

 

Lp ¼ 10 log 10

PRMS

 

¼ 20 log 10

PRMS

¼ 20 log 10

 

p2

Pr

 

Pr

20

 

10 6

9.2.5Sound Pressure Level Calculated in Frequency Domain

In the previous section, sound pressure level (SPL) was dened and calculated in the time domain. However, there is a limitation to calculating SPL in the time domain: weighted SPL cannot be calculated in the time domain because the weighting is frequency-dependent. For this reason, SPL is commonly formulated and calculated in the frequency domain:

TIME DOMAIN

 

 

 

FREQUENCY DOMAIN

 

 

FFT

 

 

 

 

 

 

 

 

Pressure in Time Domain

 

 

 

Pressure in Frequency Domain

 

 

 

 

 

 

 

+ ∑

cos

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unweighted RMS Pressure

 

Unweighted RMS Pressure

=

 

 

+

 

 

 

 

 

 

 

 

 

Sound Pressure Level (SPL)

Parseval’s Theorem Relates RMS Pressure

= 10 log

in Time Domain and Frequency Domain

Parsevals theorem is used to formulate the RMS pressure in the frequency domain. Parsevals theorem is shown and proved as follows:

Parsevals Theorem

1 p2RMS ¼ P2o þ 12 X P2k

k¼1

Proof of Parsevals Theorem

Based on the Fourier transform, a pressure function in time domain p(t) can be formulated in the frequency domain with the frequency contents Pk as:

X1

pðtÞ ¼ Po þ k¼1Pk cos ð2π f kt þ θkÞ

The RMS pressure of this function can be formulated with Parsevals theorem as:

236

 

 

 

 

 

 

 

 

9 Sound Pressure Levels and Octave Bands

 

 

 

 

pRMS2 = T Z0

T

 

 

 

 

 

p2ðtÞdt

 

 

 

 

 

 

 

 

1

 

 

 

= T

T

 

Po þ

 

k¼1Pk

cos ð2π f kt þ θkÞ dt

Z0

 

 

1

 

 

n

 

X

1

 

o

2

Because Fourier series is an orthogonal basis which means that for i j:

Z0 T

cos ð2π f it þ θkÞ cos 2π f jt þ θk dt ¼ 0

Apply the above orthogonal property for p2RMS results:

pRMS = T Z0

T

Po þ

k¼1Pk cos ð2π f kt þ θkÞ dt

2

 

1

 

 

 

n X

1

 

 

 

 

o

2

 

 

 

 

 

 

 

 

=Po

T Z0

T

 

 

 

T

T

cos

 

 

dt þ Xk¼1Pk

 

Z1

2

ð2π f kt þ θkÞdt

2

1

 

 

 

 

 

1

2

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

 

 

 

 

 

 

 

 

 

 

 

¼ Po2 þ

 

 

 

X

Pk2

 

 

 

 

 

 

 

 

 

 

2

 

k¼1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frequency contents of amplitude Pk and phase θk can be treated as a sound source radiating a pure tone in frequency fk with an amplitude Pk and phase θk.

Example 9.5: Sound Pressure Level Calculated in Frequency Domain

Given:

The single-frequency pressure time domain function p(t):

pðx, tÞ ¼ P1 cos ð2π f 1tÞ

where:

P1 ¼ 3 ½Pa&

f 1 ¼ 500 ½Hz&

Calculate:

(a)The RMS pressure in the frequency domain

(b)The unweighted sound pressure level