Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
акустика / lin_h_bengisu_t_mourelatos_zp_lecture_notes_on_acoustics_and.pdf
Скачиваний:
81
Добавлен:
04.05.2023
Размер:
12.68 Mб
Скачать

12.4 High-Pass Filters

 

 

 

335

 

1

Power Transmission Coefficient of Low-Pass Filter

 

 

 

 

 

 

 

0.9

 

 

 

 

 

0.8

 

 

 

 

 

0.7

 

 

 

 

 

0.6

 

 

 

 

w

0.5

 

 

 

 

T

 

 

 

 

 

 

0.4

 

 

 

 

 

0.3

 

 

 

 

 

0.2

 

 

 

 

 

0.1

 

 

 

 

 

0

10-1

100

101

102

 

10-2

 

 

 

/ c

 

 

Power transmission coefcient as a function of the frequency ratio

Remarks

The expanded middle section behaves like a low-pass lter. It lters out the wave

for frequencies above ωc ¼ 2Sc.

S2L

The impedance in a low-pass lter changes two times in series.

12.4High-Pass Filters

A high-pass lter can be constructed by a pipe with a small hole. The cross-sections of the pipes are Si, S1, and S2 as shown below. The length of outlet Pipe 1 (open side

branch) is L1 ¼ 0. The radius of Pipe 1 is a and is related to the cross-section S1 of Pipe 1 as S1 ¼ πa2:

336

12 Filters and Resonators

1 = 1 + 1

=

= =

Assumptions

(1) Side pipe can be modeled as a point source:

r, tÞ ¼ ρ4oπckr Qse jðωt krþθ0þπ2Þ

 

k

 

π

r, tÞ ¼

 

 

Qse jðωt kr ϕþθoþ2Þ

4πrcos ϕ

Þ

 

ð

 

(2) The radius of Pipe 1, a, is much less than the wavelength λ divided by 2π as:

a

λ

1

 

¼

 

2π

k

!ka 1

(3)The acoustic impedance Z1 is calculated at:

8a r ¼ 3π

Objective

Show that based on the three assumptions above, the power transmission Tw2 coefcients to Pipe 2 of this high-pass lter can be formulated as:

Tw = 1 þ 1ωc 2 2

ω

where ωc ¼ 2cL0 and L0 ¼ 38πSSi1 a.

12.4 High-Pass Filters

337

Procedures

Step 1: Estimate acoustic impedance Z1 at the open side branch. Step 2: Calculate pressure ratio using equivalent acoustic impedance. Step 3: Calculate power transmission coefcient.

Step 1: Estimate Acoustic Impedance Z1 at the Open Side Branch

The acoustic impedance Z1 at the open side branch can be calculated from the pressure and velocity at the side open.

Assumption #1: Side pipe can be modeled as a point source.

Using the formulas of point sources, the pressure and the ow velocity are given by:

r, tÞ ¼ ρ4oπckr Qse jðωt krþθ0þπ2Þ

 

k

 

π

r, tÞ ¼

 

 

Qse jðωt kr ϕþθoþ2Þ

4πr cos ϕ

Þ

 

ð

 

1 = 1 + 1

=

 

 

=

+

=

 

 

A pipe with a small hole as an open side branch

The acoustic impedance can be calculated by the above pressure and velocity:

 

 

p1

 

 

ρock

Q

e j ωt krþθ0þπ2

Þ

 

 

 

Z1

 

=

 

4πr

 

 

s

ð

 

 

 

 

 

 

 

 

 

S1v1

 

k

 

 

 

 

 

j ωt

 

kr

 

ϕ

 

θo

2

 

 

 

 

 

S1 4πr cos

ð

ϕ

Þ

Qse

ð

 

 

 

 

þ

 

þ

Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Canceling out all common terms yields:

Z1 = ρoc cos ðϕÞe jðϕÞ

S1

where:

338

 

12 Filters and Resonators

cos ðϕÞ ¼

kr

 

1 þ ðkrÞ2

 

q

Assumption #2: The radius a of Pipe 1 is much less than the wavelength λ

divided by 2π as:

 

 

 

 

 

 

 

a

λ

1

 

 

 

 

¼

 

 

 

 

2π

k

 

! ka 1

 

For kr 1:

 

 

 

 

 

 

 

cos ðϕÞ ¼

 

 

kr

kr

 

 

 

 

1 þ ðkrÞ2

 

q

 

and:

 

 

 

 

 

 

 

 

ϕ

π

 

 

2

 

 

 

 

Based on kr 1, the acoustic impedance becomes:

1

 

S1

ð

Þ

 

S1

ð

Þ ¼

 

S1

Z

=

ρoc

cos

 

ϕ

e jðϕÞ

 

ρoc

kre j π2

 

j

ρoc

kr

 

 

 

 

 

Assumption #3: The acoustic impedance Z1 is calculated at:

8a r ¼ 3π

Assume that the acoustic impedance is calculated at a distance r ¼ 38πa from the point source, where a is the radius of opening. Then, the above acoustic impedance

becomes:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z1 j

ρoc

kr j

ρoc

k

8a

 

ð6Þ

S1

 

S1

3π

 

 

or:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ρoc

 

 

j

π

ρoc

 

8a

j π

 

Z1

 

kre

ð2Þ

 

k

 

e

ð2Þ

ð7Þ

S1

S1

3π

12.4 High-Pass Filters

339

Note that the acoustic impedance is a complex number. More specically speaking, this acoustic impedance is an imaginary number. This imaginary number has a phase separation of π2 between the pressure and velocity:

 

p1

 

ρoc

 

j π

Z1

 

=

 

kre

ð2Þ

S1v1

S1

The π2 phase angle indicates that there is a 90-degree phase difference between the pressure and velocity. The phase difference is similar to the phase delay of the damping of a structure. Also, the magnitude of the complex impedance is the ratio of magnitudes of pressure to velocity.

For the purpose of simplicity, the acoustic impedance in Eq. (6) can be condensed into:

Z

1

 

j

ρoc

k

8a

¼

j

ρoc

kL0, where L0

¼

8Si

a

ð

8

Þ

 

3π

 

 

 

 

S1

 

Si

3πS1

 

In addition, at the intersection of the main pipe, the impedance becomes:

Z2 ¼ Zi ¼ ρoc

Si

Therefore:

Z2

 

Z1

j

ρoc kL0

 

¼ 1 and

 

S

¼ jkL0

 

 

¼

 

ρi oc

 

Zi

Zi

 

Si

 

 

 

 

 

 

Step 2: Calculate Pressure Ratio Using Equivalent Acoustic Impedance

A side branch on the pipe with a small hole to the outside medium behaves like a high-pass lter when the length of the side branch is very short.

The high-pass lter can be considered as a special case of the one-to-two pipe with the length of the side branch being zero, as analyzed in the previous section:

 

Z1 Z2

 

 

j ρoc kL0 ρoc

 

jkL0Zi

Zo ¼

 

 

Si

Si

 

 

 

 

¼

 

 

 

 

 

 

¼ jkL0

 

1

Z1

þ

Z2

j

ρoc

kL0

 

ρoc

þ

 

þ Si

 

 

 

 

 

 

Si

 

 

 

!Zi = jkL0 þ0 1 ¼ 1 j 1 0 Zo jkL kL

Therefore, all formulas derived for a one-to-two pipe are valid for the high-pass lter. The pressure ratios for the one-to-two pipe are shown below:

340

 

 

 

 

 

 

 

 

 

 

 

 

12 Filters and Resonators

 

 

 

Pr

¼

 

Zo Zi

 

 

 

 

 

 

Pi

 

Zo

þ

 

Zi

 

 

 

 

 

 

 

 

 

 

 

P1

 

 

 

P2

 

 

 

2Zo

 

 

Pi

¼ Pi

¼

Zo

þ

Zi

 

 

 

Since we know all impedances of the high-pass lters, all pressures can be calculated using the above equations as the following:

 

Pr

 

 

 

Zo 2Zi

 

 

1 2 Zi

=

 

1 2 jkL0þ1

=

 

 

 

 

 

 

 

1

 

 

 

1

 

2

 

 

1

 

 

 

 

 

 

 

 

 

Zo

 

 

 

 

 

 

jkL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2kL0

 

 

 

 

 

 

 

¼

 

¼

 

 

 

 

Zo

 

 

 

 

 

 

jkL0

 

 

 

 

j 2kL0

 

=

2 2kL0

 

 

þ j 2kL0

 

Pi

 

Zo

þ

Zi

 

1

 

 

 

Zi

 

 

 

 

 

 

 

1

 

 

 

jkL0þ1

 

 

 

1

 

 

j

1

 

1

 

 

 

1

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

þ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

þ

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

þ

2

10

 

 

 

 

 

 

 

P2

=

 

2Zo

=

2

 

 

 

 

=

 

 

 

2

 

 

 

=

 

 

 

 

 

1

 

=

1 þ j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2kL0

 

 

 

 

 

 

Pi

Zo

þ

Zi

 

1

þ

 

 

Zi

 

 

1

 

 

jkL0

þ1

 

 

1

 

j

1

 

 

 

 

 

1

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zo

 

 

 

þ

 

 

jkL0

 

 

1

 

 

 

 

2kL0

1 þ 2kL0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P1

 

 

 

P2

 

 

 

1 þ j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2kL0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¼

 

 

¼

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pi

Pi

 

1 þ

1

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2kL0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 3: Power Transmission Coefcient

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The power transmission coefcient is dened as:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tw ¼ wi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

wi ¼

1

 

Pi þ Pi Ui

þ Ui

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w2 ¼

1

P2 þ P2 U2

þ U2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

For the pipe with a side branch pipe as a small hole to the outside medium, Zi and Z2 are real numbers, but Z1 and Zo are complex numbers. In addition, Pi is real but P2 is complex.

Hence, the power transmission through the main pipe is:

Tw = Re

P

 

2 Zi

 

1

 

 

1

 

2

 

 

=

 

 

 

=

 

ð Zi, Z2, Pi realÞ

Pi

Z2

1 þ

1

2 2

1 þ ωωc 2 2

 

 

 

 

2kL0

 

 

The open side behaves like a high-pass lter; it lters out the wave for frequency ω ¼ kc below ωc ¼ 2cL0:

12.4 High-Pass Filters

341

Power Transmission Coefficient of High-Pass Filter

10-2

10-1

100

101

102

 

 

/

 

 

 

 

c

 

 

Power transmission coefcient as a function of the frequency ratio

Remarks

Transmission pressures P1 and P2 are outward (no return) forward waves.

Because pressures Pi,Pr, and P2 are traveling plane waves, their acoustic impedances Zi(0c/Si), Zr(= 2 ρ0c/Si), and Z2(0c/S2) are real numbers.

The transmission pressure P1 is a spherical wave, and the acoustic impedance Z1 is a complex number.

Si: cross-section area of the inlet pipe.

S1: cross-section area of outlet Pipe 1 (side branch).

S2: cross-section area of outlet Pipe 2 (main pipe).

L1: length of outlet Pipe 1 (outlet side branch).

pi: pressure of the incident wave in the inlet pipe.

pr: pressure of the reected wave in the inlet pipe.

p1: pressure of the transmitted wave in outlet Pipe 1 (outlet side branch).

p2: pressure of the transmitted wave in outlet Pipe 2 (outlet main branch).

Pi ¼ PiR: complex pressure of the incident wave at the RHS of the inlet pipe.

P1: complex pressure of the transmitted wave in the side branch pipe at the intersection.

P2 ¼ P2L: complex pressure of the transmitted wave at the LHS of Pipe 2.

Zi: acoustic impedance of the incident wave at the RHS of the inlet pipe.

342

12 Filters and Resonators

Z1: acoustic impedance of the transmitted wave inside the branch pipe at the intersection.

Z2: acoustic impedance of the transmitted wave at the LHS of outlet Pipe 2.

Assume the Following Properties:

Cross-section areas of the pipes are Si, S1, and S2 where S2 ¼ Si.

Acoustic impedances, Z¼z/S, of the pipes are Zi, Zr, and Z2

where Zr ¼ Zi; Z2 ¼ Zi.

Incident pressure at the intersection of the pipe is Pi.

The length of the side branch pipe is L1 ¼ 0.

The Validation of Power Reection and Transmission Coefcients

The formulas of power for the one-to-two pipe in the previous section can be used for the high-pass lter, as shown below:

wi ¼ Re ð PiÞ Re ð ViÞS ¼ Re ð PiÞ Re ð UiÞ ¼

1

 

Pi þ Pi Ui þ Ui

4

 

wr ¼ Re ð PrÞ Re ð VrÞS ¼ Re ð PrÞ Re ð UrÞ ¼

1

 

Pr

þ Pr Ur þ Ur

 

 

 

 

4

 

w1 ¼ Re ð P1Þ Re ð V1ÞS ¼ Re ð P1Þ Re ð U1Þ ¼

1

P1

þ P1 U1 þ U1

 

 

4

w2 ¼ Re ð P2Þ Re ð V2ÞS ¼ Re ð P2Þ Re ð U2Þ ¼

1

P2

þ P2 U2 þ U2

 

4

For the pipe with a side branch pipe as a small hole to the outside medium, Zi and Z2 are real numbers, but Z1 is a complex number. In addition, Pi is real but P1 and P2 are complex.

Therefore:

 

U1 =

 

P1 Zi = 1 þ j

1

 

1

 

=

2 2kL1 0

2

j

1

 

 

 

 

 

 

 

2kL0

 

 

 

kL0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

2

 

 

 

 

 

 

 

Ui

 

Pi

Z1

1

 

 

 

1

 

 

2

 

jkL0

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

þ2 2kL0

 

 

 

 

 

 

 

 

 

 

 

þ

2kL0

 

 

 

 

 

 

 

 

 

 

 

r

 

 

1

 

 

 

2

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

Re

 

¼

2

kL10

,

 

 

 

 

 

Re

¼

 

 

 

 

 

 

 

 

 

 

 

 

Pi

 

 

 

 

 

 

 

Pi

1

 

 

 

1

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

þ

1 4

 

 

 

 

 

 

 

 

 

 

 

1

 

ωc

4 þ

ð

 

Þ

 

1

 

1

 

 

 

 

 

 

 

 

 

 

 

 

c

 

 

 

 

 

 

 

Rw = 2 Re

Pr

 

= 2

 

 

 

2kL0

 

 

 

 

 

= 2

 

 

 

 

 

 

ω

 

 

 

 

 

 

 

 

 

Zi, Zr, Pi real

 

P

 

 

 

 

 

 

 

2

 

 

2

 

 

 

 

 

 

 

 

 

2

2

 

 

 

 

 

 

 

 

 

þ 2kL0

 

 

 

 

 

 

 

þ

ω

 

 

 

 

 

 

 

 

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ω