Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
акустика / lin_h_bengisu_t_mourelatos_zp_lecture_notes_on_acoustics_and.pdf
Скачиваний:
84
Добавлен:
04.05.2023
Размер:
12.68 Mб
Скачать

124 5 Solutions of Spherical Wave Equation

rpðr, tÞ ¼ ψðr, tÞ ¼ A cos ðωt kr þ θÞ

ðREPÞ

¼

1

hAe jðωt krþθÞ þ Ae jðωt krþθÞi

ðCEPÞ

2

5.4Flow Velocity

Similar to the plane wave, the ow velocity can be obtained from sound pressure using Eulers force equation.

The one-dimensional Eulers force equation in the spherical coordinates can be obtained by replacing the vector gradient operator with the spherical coordinate gradient operator:

p ¼ ρo

 

 

ðVector formatÞ

 

u

 

 

t

 

 

 

 

!

 

pðr, tÞ ¼ ρo

 

uðr, tÞ

ðSpherical coordÞ

r

t

5.4.1Flow Velocity in Real Format

Sound pressure p(r, t) in the spherical coordinate system was derived in the previous section as:

rpðr, tÞ ¼ A cos ðωt kr þ θÞ

Flow velocity u(r, t) in spherical coordinates can be derived from Eulers force equation and expressed in real explicit phase [REP] format as:

 

 

A

 

ruðr, tÞ ¼

 

 

cos ðωt kr þ θ ϕÞ

ðREPÞ

ρoc cos ϕ

or:

 

 

 

 

uðr, tÞ ¼

 

A

 

 

cos ðωt kr þ θ ϕÞ

ðREPÞ

rρoc cos ϕ

The following will derive the above equation in real explicit phase [REP] format:

5.4 Flow Velocity

125

Flow velocity expressed in real explicit phase [REP] format can be derived independently using Eulers force equation:

r pðr, tÞber ¼ ρo t uðr, tÞ

For a given pressure p(x, t), ow velocity u(x, t) can be calculated as:

uðr, tÞ ¼ ρo

Z r pðr, tÞ dt

1

Flow velocity in real number format will be derived in this section:

ruðr, tÞ ¼

A

ðREPÞ

ρoc cos ϕ cos ðωt kr þ θ ϕÞ

Flow velocity formulated in real explicit phase [REP] format is derived from pressure p(r, t) as:

rpðr, tÞ ¼ A cos ðωt kr þ θÞ

Substituting the above pressure p(r, t) into the formula for ow velocity yields:

ð

 

Þ ¼

ρo

 

Z

r

ð

 

Þ

 

¼

 

ρo

Z

 

r hr

 

 

 

ð

 

 

 

 

 

þ

 

Þi

u

r, t

 

 

1

 

 

 

 

p

r, t

 

 

 

 

dt

 

 

 

A

 

 

 

 

1

 

cos

 

ωt

 

 

kr

 

 

 

θ

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Carrying out the derivative with respect to r yields:

 

 

 

 

 

 

 

 

 

 

 

 

Þ

 

 

 

ð

 

Þ ¼

 

ρo

Z r

 

 

ð

 

 

 

 

 

þ

 

 

Þ r2

 

 

 

ð

 

 

 

 

 

 

þ

 

 

 

 

u

r, t

 

 

 

A

 

 

 

k

sin

 

 

ωt

 

 

kr

 

 

θ

 

 

 

1

 

cos

 

ωt

 

 

 

kr

 

 

θ

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Carrying out the integral for t yields:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð

 

Þ ¼

 

r

 

ω

 

 

 

 

ð

 

 

 

 

 

þ

 

 

Þ

 

r2

 

ω

 

 

 

 

ð

 

 

 

 

 

 

þ

 

u

r, t

 

 

A

 

k

 

1

 

cos

 

 

ωt

 

 

kr

 

 

θ

 

 

1

 

 

1

 

 

sin

 

 

ωt

 

 

 

kr

 

 

θ

 

 

 

 

 

¼ rρo

ω h cos ðωt kr þ θÞ þ kr sin ðωt kr þ θÞi

 

 

 

 

 

 

 

 

 

 

 

 

A

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simplify the above equation and replace

ω with c to arrive at:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uðr, tÞ ¼ rρoc h cos ðωt kr þ θÞ þ kr sin ðωt kr þ θÞi

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Combining the cosine and sine functions into one cosine function yields:

126

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 Solutions of Spherical Wave Equation

 

 

 

uðr,tÞ¼

 

A

 

hcosðωt krþθÞþ

 

1

sinðωt kr þ

θÞi

 

 

 

 

 

 

 

 

 

 

 

 

rρoc

kr

 

 

 

 

 

¼

A

 

1

½krcosðωt kr þθÞþsinðωt kr þθÞ&

 

 

 

 

 

 

 

 

 

 

 

 

rρockr

3

 

 

q

 

 

 

 

 

 

 

 

 

cos ωt

kr

θ

 

 

 

sin ωt kr θ

 

A

1þðkrÞ2 2

 

 

kr

 

 

ð þ Þþ

1

 

 

¼rρoc

 

kr

6

1þðkrÞ2

 

1þðkrÞ2

 

ð þ Þ7

 

 

 

 

 

 

4q

 

 

 

 

 

 

 

 

q

 

 

5

Dene a new variable ϕ as:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos ϕ

¼

 

 

 

 

kr

 

;

sin

ϕ ¼

1

 

 

 

 

 

 

 

 

q

q

 

 

 

 

 

 

 

 

 

 

1 þ ðkrÞ2

1 þ ðkrÞ2

 

 

Then, u(r, t) can be simplied as:

 

 

 

 

 

 

 

 

 

 

uðr, tÞ ¼

A

1

 

½ cos ðϕÞ cos ðωt kr

þ θÞ þ sin ðϕÞ sin ðωt kr þ θÞ&

 

 

 

rρoc

 

cos ðϕÞ

 

 

! ruðr, tÞ ¼

 

A

 

 

 

 

1

 

½ cos

ðωt kr þ θ ϕÞ&

 

 

ð5:4Þ

 

 

 

ρoc

 

cos ϕ

 

 

where:

ϕ ¼ tan 1 1 kr

Eq. (5.4) is the ow velocity of spherically symmetric acoustic wave, for a given pressure function, as described in Eq.(5.3).

5.4.2Flow Velocity in Complex Format

Sound pressure p(r, t) in the spherical coordinate system was derived in the previous ion as:

rpðr, tÞ ¼ A cos ðωt kr þ θÞ

It can be formulated in a complex explicit phase [CEP] as shown below using Eulers formula:

5.4 Flow Velocity

127

rpðr, tÞ ¼ A

1

ðCEPÞ

2 he jðωt krþθÞ þ e jðωt krþθÞi

The corresponding ow velocity in a complex exponential format as shown below can be derived using Eulers force equation:

ruðr, tÞ ¼

A

1

he jðωt krþθ ϕÞ þ e jðωt krþθ ϕÞi

ðCEPÞ

ρoc cos ϕ

 

2

where:

ϕ ¼ tan 1 1 kr

The derivation of the ow velocity formulated in complex explicit phase [CEP] format is not derived here. The derivation is part of the homework in this chapter.

Example 5.2

What is the phase difference between the pressure and the ow velocity of a

spherical wave at 3 [m] from the origin at 1000 [Hz]?

Use 340 ms for the speed of sound (c) in air.

Example 5.2 Solution The general form of pressure of a spherical wave is:

rpðr, tÞ ¼ A cos ðωt kr þ θÞ

The formula of ow velocity is derived from pressure using Eulers force equation:

A

ruðr, tÞ ¼ ρoc cos ϕ cos ðωt kr þ θ ϕÞ

where:

ϕ ¼ tan 1 1 kr

Hence, by inspecting the exponents of pressure and ow velocity, the phase difference between pressure and ow velocity of a spherical wave is equal to ϕ, with ow velocity lagging behind the pressure.

For the given conditions:

f ¼ 1000 ½Hz&