Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
акустика / lin_h_bengisu_t_mourelatos_zp_lecture_notes_on_acoustics_and.pdf
Скачиваний:
84
Добавлен:
04.05.2023
Размер:
12.68 Mб
Скачать

168

7 Resonant Cavities

c

f lmn ¼ 2π klmn

where klmn (combined wavenumber) is related to kxl, kym, kzn as:

k2lmn ¼ k2xl þ k2ym þ k2zn

The component wavenumbers kxl, kym, and kzn are the discretized wavenumbers of the eigenmode (l, m, n) and are related to circular frequencies as:

kxl ¼

 

π

 

 

 

c

 

 

 

l ! f xl ¼

 

 

 

kxl

Lx

2π

 

π

 

 

 

 

 

 

c

kym ¼

 

 

m;

! f ym ¼

 

 

kym

Ly

2π

 

 

π

 

 

 

 

c

kzn ¼

 

n

! f zn ¼

 

 

kzn

Lz

2π

Four combinations of boundary conditions of a pipe will be discussed near the end of this chapter. The natural frequencies of the four cases of boundary conditions are summarized as:

 

Left end

Right end

Wavenumber

Natural frequency

Wavelength

Case 1

CLOSED

CLOSED

kl ¼ Lπ l

f l ¼

c

l

λl ¼ 2L 1l

 

 

2L

 

 

Case 2

OPEN

OPEN

kl ¼ Lπ l

f l ¼

c

l

λl ¼ 2L 1l

 

 

2L

 

 

Case 3

OPEN

CLOSED

kl ¼

π

ð2l 1Þ

f l ¼

c

ð2l 1Þ

λl ¼ 4L

1

 

 

2L

4L

 

 

ð2l

1Þ

Case 4

CLOSED

OPEN

kl ¼

π

ð2l 1Þ

f l ¼

c

ð2l 1Þ

λl ¼ 4L

1

 

2L

4L

 

 

ð2l

1Þ

7.11D Standing Waves Between Two Walls

Between two parallel walls, standing waves exist as mode shapes of air movement between two walls. The standing wave solutions of the acoustic wave equation can be obtained by solving the boundary conditions imposed by the rigid walls.

In a previous chapter, the standing wave solutions were constructed by the addition of two traveling waves with the same amplitude (A+ ¼ A ¼ A) that moved in opposite directions as:

psðx, tÞ ¼ pþðx, tÞ þ p ðx, tÞ

¼A cos ðωt kx þ θþÞ þ A cos ðωt þ kx þ θ Þ

¼2A cos ðωt þ θtÞ cos ðkx þ θxÞ

7.1 1D Standing Waves Between Two Walls

169

, = +

=

In this chapter, standing waves ps(x, t) are obtained directly by solving the acoustic wave equation.

The one-dimensional wave equation in Cartesian coordinate is:

2p ¼ 1 2p c2 t2

!2p ¼ 1 2p

x2 c2 t2

The differential equation is separable if a solution can be cast in the following form that satises the acoustic wave equation:

pðx, tÞ ¼ TðtÞXðxÞ

Substituting the above solution into the acoustic wave equation above yields the two separate ordinary differential equations (ODEs):

1

T}ðtÞ

¼

X}ðxÞ

¼

k2

 

c2 TðtÞ

XðxÞ

 

where k is a new variable that relates the spatial and temporal parts of the differential equations. The new variable k gives us the two separate ordinary differential equations (ODEs) as:

1 T}ðtÞ ¼ k2 c2 TðtÞ

X}ðxÞ ¼ k2

XðxÞ

With the new variable k, the solutions of the temporal and the spatial differential equations are:

170

7 Resonant Cavities

 

TðtÞ ¼ At cos ðωt þ θtÞ

XðxÞ ¼ Ax cos ðkx þ θxÞ

Therefore, the standing wave solution of the 1D wave equation is:

psðx, tÞ ¼ TðtÞXðxÞ

¼ AtAx cos ðωt þ θtÞ cos ðkxx þ θxÞ

where the unknown constants At, Ax, θt, and θx are calculated using the boundary conditions from the two rigid walls. Since T(t) and X(x) are both real numbers, the standing wave functions are real.

Using Eulers force equation, the velocity of the one-dimensional standing wave was derived in a previous chapter and is:

uðx, tÞ ¼ ρo

Z x pðx, tÞ dt

 

 

1

 

 

! usðx, tÞ ¼

1

 

AtAx sin ðωt þ θtÞ sin ðkx þ θxÞ

 

ρ0c

7.2 Natural Frequencies and Mode Shapes in a Pipe

If the boundary condition at the end of a pipe is either open or closed, there will be four combinations of boundary conditions of a single pipe. The four combinations of the boundary conditions of a single pipe are summarized in the table below:

 

Left end

Right end

Wavenumber

Natural frequency

Wavelength

Case 1

CLOSED

CLOSED

kl ¼ Lπ l

f l ¼

c

l

λl ¼ 2L 1l

 

 

2L

 

 

Case 2

OPEN

OPEN

kl ¼ Lπ l

f l ¼

c

l

λl ¼ 2L 1l

 

 

2L

 

 

Case 3

OPEN

CLOSED

kl ¼

π

ð2l 1Þ

f l ¼

c

ð2l 1Þ

λl ¼ 4L

1

 

 

2L

4L

 

 

ð2l

1Þ

Case 4

CLOSED

OPEN

kl ¼

π

ð2l 1Þ

f l ¼

c

ð2l 1Þ

λl ¼ 4L

1

 

2L

4L

 

 

ð2l

1Þ

Case 1 and Case 2 in the table above are demonstrated in the examples listed below. You can practice Case 3 and Case 4 in the homework exercises listed below:

Case 1: Example 7.1

Case 2: Example 7.2

Case 3: Homework Exercise 7.1

Case 4: Homework Exercise 7.2

7.2 Natural Frequencies and Mode Shapes in a Pipe

171

Example 7.1 (CLOSED-CLOSED PIPE)

A pipe with CLOSED-CLOSED boundary conditions has a nite length L as shown below. Set the left end of the pipe as x¼0:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 0

=

(a)Derive the following formulas for wavenumber and natural frequency of eigenmode l:

kl ¼ Lπ l,

c f l ¼ 2L l

(b) Plot the mode shapes of the rst three natural frequencies.

Example 7.1 Solution Part (a)

Natural Frequencies of a CLOSED-CLOSED PIPE

The closed end represents a xed wall that requires the ow velocity to be zero at all times.

The boundary condition at the left wall (CLOSED):

 

 

 

 

usðx, tÞjx¼0 ¼ 0

 

 

 

¼ 0

! usðx ¼ 0, tÞ ¼ ρ0c AtAx sin ðωt þ θtÞ sin ðkx þ θxÞ x

¼

0

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above boundary condition requires that the velocity is zero at x ¼ 0 at any time. Therefore:

sin ðkx þ θxÞjx¼0 ¼ 0 ! sin ð0 þ θxÞ ¼ 0 ! θx ¼ 0

Note that the sine function above is simplied from sin(kx + θx) to sin(θx) by letting x ¼ 0 at the left wall.

The boundary condition at the right wall (CLOSED):

172

 

7 Resonant Cavities

usðx, tÞjx¼L ¼ 0

1

 

! usðx ¼ L, tÞ ¼

AtAx sin ðωt þ θtÞ sin ðkLÞ ¼ 0

 

ρ0c

The above boundary condition requires that the velocity is zero at x ¼ L at any time. Therefore:

sin ðkxÞjx¼L ¼ 0 ! klL ¼ lπ

!

kl ¼

lπ

, l is an integer

L

Substituting kl into the velocity yields the nal one-dimensional standing waves between two rigid walls:

1

usðx, tÞ ¼ ρ0c AtAx sin ðωt þ θtÞ sin ðklxÞ psðx, tÞ ¼ AtAx cos ðωt þ θtÞ cos ðklxÞ

where the wavenumber of eigenmode l is:

π

kl ¼ L l

Therefore, the natural frequency of eigenmode l is:

f l ¼

c

 

c

 

 

 

kl ¼

 

 

 

l

2π

2L

And the corresponding wavelength is:

 

 

 

 

 

 

 

2π

 

1

 

 

λl ¼

 

¼ 2L

 

 

kl

l

Part (b)

Mode Shapes of a CLOSED-CLOSED PIPE

The discretized velocity, pressure, and wavelength of the eigenmode l are relisted here for plotting the mode shapes:

1

usðx, tÞ ¼ ρ0c AtAx sin ðωt þ θtÞ sin ðklxÞ

psðx, tÞ ¼ AtAx cos ðωt þ θtÞ cos ðklxÞ

π

kl ¼ L l

7.2 Natural Frequencies and Mode Shapes in a Pipe

173

2π

 

2L

λl ¼

 

¼

 

kl

l

The wavelength of each eigenmode is helpful for plotting the mode shapes, and the wavelengths of the rst three eigenmodes are shown below:

2 λ1 ¼ 2L; λ2 ¼ L; λ3 ¼ 3 L;

Based on the wavelengths above and zero velocities on the edge, we can plot the mode shape of the mode (l, m) ¼ (2, 3) as follows:

The rst two mode shapes of velocity and pressure of a CLOSED-CLOSED pipe are shown below:

= 0

 

 

 

 

= 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

= 1

 

=

 

 

 

 

 

= 2

 

Note that the zero velocity corresponds to the maximum pressure (zero slope) based on Eulers force equation.

Also, the mode shapes of ow velocity are typically not plotted in 2D and 3D because ow velocities are vectors. It will require more than one gure to show a mode shape of ow velocities: one gure for each direction. Therefore, mode shapes of sound pressures are commonly used.

The rst three mode shapes of the pressure of a CLOSED-CLOSED pipe are shown below:

Mode 1: (l ¼ 1)

174

7 Resonant Cavities

= =

2π

 

2L

! λ1 ¼ 2L

λl ¼

 

¼

 

 

kl

l

Mode 2: (l ¼ 2)

 

 

 

 

= =

λl ¼

2π

¼

2L

! λ2 ¼ L

kl

 

l

Mode 3: (l ¼ 3)

 

 

 

 

=

 

 

 

 

=

2π

 

2L

! λ3 ¼

2

L

λl ¼

 

¼

 

 

 

kl

l

3

Example 7.2 (OPEN-OPEN PIPE)

A pipe with OPEN-OPEN boundary conditions has a nite length L as shown below. Set the left end of the pipe as x¼0. Determine the rst three natural frequencies and plot their corresponding mode shapes:

7.2 Natural Frequencies and Mode Shapes in a Pipe

175

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 0

=

Example 7.2 Solutions

The boundary condition of an open end requires that the sound pressure be zero at all times. Note that the boundary condition of a closed end requires that the ow velocity be zero at all times.

The boundary condition at the left wall (OPEN):

psðx, tÞjx¼0 ¼ 0

! psðx ¼ 0, tÞ ¼ AtAx cos ðωt þ θtÞ cos ðkx þ θxÞjx¼0 ¼ 0

The above boundary condition requires that the pressure is zero at x ¼ 0 at any

time. Therefore:

 

 

cos ðkx þ θxÞjx¼0 ¼ 0 ! cos ð0 þ θxÞ ¼ 0 ! θx ¼

π

2

The boundary condition at the right wall (OPEN):

 

 

psðx, tÞjx¼L ¼ 0

 

 

! psðx ¼ Lx, tÞ ¼ AtAx cos ðωt þ θtÞ cos kx þ

π

 

2 ¼ 0

 

The above boundary condition requires that the velocity is zero at x ¼ L at any time. Therefore:

π

cos kx þ 2 x¼L ¼ 0

ππ

!klL þ 2 ¼ 2 ð2l þ 1Þ

!

π

kl ¼ L l , l is an integer

176

7 Resonant Cavities

Substituting kl into the velocity yields the nal one-dimensional standing waves between two rigid walls:

 

1

 

 

 

π

usðx, tÞ ¼

 

AtAx sin ðωt þ θtÞ sin

klx þ

2

ρ0c

psðx, tÞ ¼

AtAx cos ðωt þ θtÞ cos klx þ

π

 

2

 

where the wavenumber of the eigenmode l is:

π

kl ¼ L l, l ¼ 1, 2, . . .

Therefore, the natural frequency of the eigenmode l is:

f l ¼

c

 

c

 

 

 

kl ¼

 

 

 

l

2π

2L

And the corresponding wavelength is:

 

 

 

 

 

 

 

2π

 

1

 

 

λl ¼

 

¼ 2L

 

 

kl

l

Mode Shapes of an OPEN-OPEN PIPE:

The rst three mode shapes of the pressure of an OPEN-OPEN pipe are shown below:

Mode 1: (l ¼ 1)

λl ¼ 2π ¼ 2L ! λ1 ¼ L kl l 2 1