Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
акустика / lin_h_bengisu_t_mourelatos_zp_lecture_notes_on_acoustics_and.pdf
Скачиваний:
84
Добавлен:
04.05.2023
Размер:
12.68 Mб
Скачать
TL Lwi Lwt ¼ Lpi Lpt ¼ 10 log

266

10 Room Acoustics and Acoustical Partitions

P2

w ¼ RMS S ½plane waves&

ρoc

The transmission loss can also be formulated in terms of the RMS pressure

PRMS as:

¼

 

 

wt

¼

 

 

pRMS,t! ¼

 

 

 

p2

 

 

 

 

 

 

 

 

RMS,t

 

 

 

 

w

 

 

 

 

 

pRMS2 ,i

 

 

 

RMS,i

 

 

 

 

 

 

 

 

 

B Pr2

C

TL

10 log

 

 

i

 

10 log

 

 

 

 

10 log

0

r

1

 

 

 

 

 

2

 

 

p2

 

 

 

p2

 

 

 

 

p2

 

@

 

A

¼

 

 

 

 

¼

 

 

 

 

 

pr2

 

 

pr2

 

 

 

 

10 log

 

RMS,i

 

10 log

RMS,t

Lpi

 

Lpt

 

 

 

 

 

 

 

 

 

 

 

The denition and formulas of the transmission loss (TL) can be summarized as:

1

τ

10.5Noise Reduction due to Acoustical Partitions

10.5.1 Energy Density due to a Partition Wall

The total energy density δ is the sum of the direct energy δd and the reverberant energy density δr as:

δ ¼ δd þ δr

The energy density δ is related to the sound power w by an area S as shown in Sect. 10.1.3 as:

10.5 Noise Reduction due to Acoustical Partitions

267

δ ¼ cSw

Direct Energy Density

The formula for direct energy density due to plane waves was derived in Sect. 10.1.3 and is shown below for reference:

 

w

 

PRMS2

δd ¼

 

¼

 

 

½plane waves&

Sc

ρoc2

where PRMS is the RMS pressure in the room radiated from the four walls. Because Pwall (RMS pressure on the wall) contributes to only part of PRMS (RMS

pressure on the room), PRMS can be related to Pwall with a ratio of SwallS as:

2

2

Swall

PRMS

¼ Pwall

S

Therefore, the direct energy density δd can be formulated in terms of Pwall as:

δd ¼

Pwall2

Swall

ρoc2

S

Reverberant Energy Density

The reverberant energy density is a summation of all the reected energy from the direct energy density:

δr ¼ δdhð1 αÞ þ ð1 αÞ2 þ . . . þ ð1 αÞni ¼ δd RS

where RS was derived in the previous section as:

S ¼ ð1 αÞ ¼ ð1 αÞ þ ð1 αÞ2 þ . . . þ ð1 αÞn

R α

Therefore:

δr ¼ δd RS

Total Energy Density

The total energy density δ is the sum of the direct and reverberant energy densities:

δ ¼ δd þ δr

268

10 Room Acoustics and Acoustical Partitions

¼δd þ δd RS

S

¼δd 1 þ R

Because the direct energy density δd can be formulated in terms of Pwall as:

δd ¼

Pwall2

Swall

ρoc2

S

therefore, the total energy density δ can be formulated in terms of Pwall as:

 

Pwall2

Swall

 

S

δ ¼

 

 

 

1 þ

 

 

ρoc2

S

R

10.5.2 Sound Pressure Level due to a Partition Wall

Equating the energy density expression above to the energy density from the sound

pressure δ ¼ P2RMS (see Sect. 10.1.3) yields a relationship between the RMS pressure

ρoc2

in a room and the acoustic source, as shown below:

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

δ ¼ δd 1 þ

 

 

 

 

 

R

 

 

 

! ρoc2

¼ ρoc2

 

S

1 þ R

 

 

PRMS2

 

Pwall2

Swall

 

 

S

 

! ρoc2

¼ ρoc2

 

S

þ

R

 

 

PRMS2

 

 

Pwall2

 

Swall

 

Swall

 

! PRMS

¼ Pwall

 

S

þ

R

2

 

2

 

Swall

 

Swall

 

The ratio between the wall area Swall and the room surface S can be approximated as:

SwallS ¼ 14

Then:

10.5 Noise Reduction due to Acoustical Partitions

 

 

269

PRMS ¼ Pwall 4

þ

 

R

2

2

1

 

Swall

Divide both sides by the

square

of

the

international pressure reference

Pr ¼ 20 10 6 [Pa], and take log base 10 of both sides of the above equation as:

10 log Pr2

¼ 10 log Pr2

 

4

þ R

 

 

PRMS2

Pwall2

 

1

 

Swall

 

 

 

1

 

 

Swall

 

! LP ¼ Lp,wall þ 10 log

 

þ

 

 

 

 

 

4

 

R

 

 

where Lp, wall is the sound pressure level (SPL) near the wall without considering the reection wave and LP is the SPL near the wall considering both the direct and reected waves. Note that the rst term 14 in the logarithmic function above is the result of the direct wave and the second term SwallR is the result of the reection wave.

Sound Pressure Level Away from the Wall

The sound pressure level (SPL) located far from the wall is formulated based on the above formulas for SPL located near the wall. At locations far from the partition wall, considering only the reection wave from the above equation, we obtain:

PRMS

¼ Pwall

0 þ

 

R

2

 

2

 

 

Swall

Divide both sides by the

square

of the

international pressure reference

Pr ¼ 20 10 6 [Pa], and take log base 10 of both sides of the above equation to arrive at

LP ¼ Lp,wall þ 10 log Swall

R

10.5.3 Noise Reduction (NR)

The noise reduction of the enclosure is equal to the TL of the walls of the enclosure:

NR ¼ Lp1 Lp2

270

10 Room Acoustics and Acoustical Partitions

source

Example 10.2: Common Wall

Two rooms are separated by a common wall that has the dimensions 8 5 m2 with a TL of 30 dB. Room 1 contains a noise source that produces an SPL of 108 dB near the wall. The average absorption coefcient of room 2 is 0.4, and the total surface area of room 2 is 225 m2.

(a)What is the SPL near the wall in the second room?

(b)What is the SPL far from the wall in the second room?

Example 10.2: Solution

(a) The SPL near the wall in the second room is:

 

 

 

 

 

α2 ¼ 0:4

 

 

 

 

 

 

 

 

Sw ¼ 8 5 ¼ 40 m2

 

 

 

 

 

 

R2

¼

α2 S2

¼

0:4 225

¼

150

 

 

 

 

 

1 α2

0:6

 

 

 

 

 

 

 

 

TL ¼ 30 dB

 

 

 

 

 

Lp2

 

 

Lp1 ¼ 108 dB

 

 

4

þ R2

¼ Lp,wall 1 þ 10 log 4 þ R2

¼ Lp1 TL þ 10 log

 

 

 

1

 

 

Sw

 

 

 

 

1

 

Sw

 

 

 

1

 

40

 

 

 

 

 

 

Lp2

¼ 108 30 þ

10 log

 

þ

 

¼ 108

30 2:9 ¼ 75:1 dB

4

150

(a) The SPL far from the wall in the second room is:

Lp0

2

¼ Lp1

TL þ 10 log

R2

 

 

 

 

 

Sw

10.5 Noise Reduction due to Acoustical Partitions

271

Lp0

2 ¼ 108 30 5:7 ¼ 72:3 dB

 

Example 10.3

1 2 3

Given:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q ¼ 1

 

w ¼ 2 watts2

 

r ¼ 2 m

 

2

 

 

 

 

α1 ¼ 0:2

 

S1 ¼ 100 m

 

Sw1 ¼ Sw2 ¼ 10 m

 

 

 

 

dB

TL

2 ¼

20 dB

α

2 ¼

0

:

2

 

 

 

 

 

 

 

 

 

TL1 ¼ 25

2

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

S2 ¼ 200 m

 

α3 ¼ 0:4

 

S3 ¼ 400 m

 

 

 

 

 

 

 

Determine:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Lp1 ,

(b)

Lp2 ,

(c) Lp0

, (d)

Lp3

,

(e) Lp0 , and (f) the noise reduction

(NR ¼ Lp1 Lp0

 

 

 

2

 

 

 

 

 

 

 

3

 

 

 

 

3 ) through the rooms

 

 

 

 

 

 

 

 

 

 

 

Example 10.3: Solution

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lw ¼ 10 log w þ 120 ¼ 10 log 2 þ 120 ¼ 123 dB

 

 

 

 

 

R1

¼

α1 S1

0:2 100

¼

25

 

 

 

 

 

 

1 α1

¼

1 0:2

 

 

 

 

 

 

 

Lp1 ¼ Lw þ 10 log

4πr2 þ R1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q

 

4

 

 

 

 

 

¼ 123 þ 10 log

 

1

 

þ

4

¼ 115:5605 dB

 

 

 

 

 

 

 

 

 

 

 

 

4π22

25

 

 

 

 

 

R2

¼

α2 S2

0:2 200

¼

50

 

 

 

 

 

 

1 α2

¼

1 0:2

 

 

272

¼ Lp,wall 1 þ 10 log 4 þ

 

 

10 Room Acoustics and Acoustical Partitions

Lp2

R2

 

¼ Lp1

 

TL1 þ 10 log 4 þ

R2

 

 

 

 

 

1

 

Sw1

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

Sw1

 

 

 

 

 

 

 

 

 

 

1

þ

10

 

 

 

 

 

 

 

 

¼ 115:5605 25 þ 10 log 4

50 ¼ 87:0926 dB

 

 

 

Lp0

2

¼ Lp1 TL1

þ 10 log

R2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sw1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

¼ 115:5605 25 þ 10 log

 

¼ 83:5708 dB

 

 

50

 

 

 

R3

 

 

α3 S3

¼

0:4 400

 

¼

266:7

 

 

 

Lp3

 

 

¼ 1 α3

 

0:6

 

 

 

 

 

 

 

 

 

¼ Lp,wall 2 þ 10 log 4 þ

R3

 

¼ Lp0

2

 

TL2 þ 10 log 4 þ

R3

 

 

 

 

 

 

1

 

Sw2

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

Sw2

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

10

 

 

 

 

 

 

 

 

¼ 83:5708 20 þ 10 log

þ

 

 

 

 

¼ 58:1572 dB

 

 

4

 

266:7

 

 

 

Lp0

3

¼ Lp0

2 TL2

þ 10 log

R3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sw2

 

 

 

¼ 83:5708 20 þ 10 log

 

10

 

¼ 49:3111 dB

 

 

 

 

 

266:6

 

NR ¼ Lp1 Lp0

3 ¼ 115:5605 49:3111 ¼ 66:2494 dB > 25 þ 20 dB

Example 10.4

Given:

Lp1 ¼ 100 dB

τ1 ¼ 0:01, τ2 ¼ 0:01

α1,2 ¼ 0:6, α2 ¼ 0:4

Sw ¼ 10 m2, S2 ¼ 200 m2

10.5 Noise Reduction due to Acoustical Partitions

273

1 , 2

1 2

Determine the noise reduction of a double-leaf wall with sound absorption materials between the leaves.

Example 10.4: Solution

Lp1 ¼ 100 dB

τ1 ¼ 0:01

α1,2 ¼ 0:6

Sw ¼ 10 m2

 

R1,2

 

 

2Swα1,2

 

 

 

20 0:6

¼

30 m2

 

¼ 1 α1,2

¼

 

 

 

 

 

 

0:4

 

 

 

 

1

 

 

 

 

 

 

 

1

 

 

 

10

 

 

 

 

Lp2 ¼ 100

10 log

 

 

þ 10 log

 

 

 

þ

 

¼ 100 20 2:3 ¼ 77:7 dB

0:01

4

 

30

 

 

 

 

 

 

 

 

τ2 ¼ 0:01

 

 

 

 

 

 

 

 

 

 

 

α2 ¼ 0:4

 

 

 

 

 

 

 

 

 

 

S2 ¼ 200 m2

 

 

 

 

R2

¼

S2α2

¼

200 0:4

¼

133:3 m2

 

1 α2

 

 

 

0:6

 

 

 

 

 

 

 

1

 

 

10

 

 

 

 

 

 

Lp3 ¼ 77:7 20 þ 10 log

 

þ

 

¼ 77:7 20 4:9 ¼ 52:8 dB

4

133:3