Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
акустика / lin_h_bengisu_t_mourelatos_zp_lecture_notes_on_acoustics_and.pdf
Скачиваний:
84
Добавлен:
04.05.2023
Размер:
12.68 Mб
Скачать

6.3 Acoustic Waves from a Small Pulsating Sphere

141

at r ¼ a :

uða, tÞ ¼

A

ka þ θ ϕaÞ ¼ Ua cos ðωt þ θoÞ

 

cos ðωt

aρoc cos ðϕaÞ

where the subscript a indicates the value of the associated constant at r ¼ a and then ϕa will be:

ϕa ¼ tan 1 1 ka

The unknown constant A can be obtained by comparing the magnitude of the velocity evaluated at r ¼ a to the magnitude of the given velocity at r ¼ a as:

A

aρoc cos ðϕaÞ ¼ Ua

! A ¼ aρoc cos ðϕaÞUa

This concludes the validation of formulas for velocity and sound pressure from a pulsating spherical source.

6.3Acoustic Waves from a Small Pulsating Sphere

This section will study velocity and sound pressure of spherical waves radiated from a small spherical source. Formulas for velocity and sound pressure can be simplied when the wave is radiating from a small sphere (a 1). Such a source is called a small spherical source. Since a is small, ka and ϕa become:

ω

ka ¼ c a 0

!ϕa ¼ tan 1 ka1 π2

ka

! cos ðϕaÞ ¼ q ka

1 þ ðkaÞ2

Substitute the above approximated values into the following equations:

a

pðr, tÞ ¼ Uaρoc cos ðϕaÞ r cos ðωt kðr aÞ þ θo þ ϕaÞ

uðr, tÞ ¼ Ua cos ðϕaÞ a cos ðωt kðr aÞ þ θo þ ϕa ϕÞ cos ðϕÞ r

The pressure and velocity of the small spherical source are simplied into:

142

 

 

 

 

 

6 Acoustic Waves from Spherical Sources

 

a

 

 

 

π

 

pðr, tÞ Uaρocka

 

 

cos ωt kr þ θo þ 2

 

r

 

 

ka

 

 

a

π

 

uðr, tÞ Ua

 

 

 

cos ωt kr þ θo þ 2

ϕ

cos ðϕÞ

r

The error of this simplication for the small spherical source can be calculated by using the amplitude and phase. The errors of amplitude and phase are:

 

 

 

 

 

a

 

 

q

 

 

 

Eamplitude

¼

ka cos ðϕaÞ

¼

1

þ ð

ka

Þ

2

 

1

 

 

cos

ϕ

 

Þ

 

 

 

 

 

π

 

ð

 

 

π

 

 

 

 

 

 

1

 

 

 

Ephase ¼

ðϕa þ kaÞ ¼

 

tan 1

 

 

þ ka

2

2

 

ka

Dene a total error of the approximation as:

q

E ¼ E2amplitude þ E2phase

Depending on the application, the threshold of the total error can be determined. For example, if ka ¼ 0.1, E ¼ 0.005; if ka ¼ 0.01, E ¼ 0.00005.

6.3.1Near-Field Solutions of a Small Spherical Source (kr 1)

It is also of interest to study the behavior of sound pressure and velocity at short distances (r 1) from the source or at very low frequencies (ω 1) of a wave.

When the solution (measurement point) is very close to the source, kr and ϕ are approximately given by:

kr ¼ ωc r 0

ϕ ¼ tan 1 kr1 π2

kr

cos ðϕÞ ¼ q kr

1 þ ðkrÞ2

Substituting the above approximated values back to the pressure and velocity equations induced by the pulsating small sphere yields:

6.3 Acoustic Waves from a Small Pulsating Sphere

143

 

a

 

π

pðr, tÞ Uaρoc ka

 

 

 

cos ωt kr þ θo þ

2

r

 

a

2

 

uðr, tÞ Ua

 

 

cos ðωt kr þ θoÞ

 

r

 

Hence, the pressure is nearly 90 out of phase with the velocity near the source.

6.3.2Far-Field Solutions of a Small Spherical Source (kr 1)

It is also of interest to study the behavior of sound pressure and velocity at large distances (r 1) from the source or at high frequencies (ω 1) of a wave. When the solution (measurement point) is far away from the source, kr and ϕ are approximated as:

kr ¼ ωc r 1

ϕ ¼ tan 1 1 0 kr

kr

cos ðϕÞ ¼ q 1

1 þ ðkrÞ2

Substituting the above approximated values back to the pressure and velocity relations induced by the pulsating small sphere yields:

 

 

a

 

 

π

pðr, tÞ Uaρoc ka

 

cos ωt kr þ θo

þ

2

r

a

 

 

 

π

 

uðr, tÞ Uaka

 

 

cos ωt kr þ θo þ

2

r

 

A comparison of the above pressure and velocity shows that the pressure is in phase with the velocity at large distances from the source or at high frequencies of waves.

Example 6.1 (A Small Spherical Source)

An acoustic pressure p(r, t) is created by a surface vibration of a spherical source with a radius a ¼ 1001 ½m&. Given the surface velocity of the sphere as:

 

1

 

m

1

 

m

uðr ¼ a, tÞ ¼ Ua cos 2πft

 

πh

 

i

¼ Re Uae jðωt 2

πÞh

 

i

2

s

s

144

6 Acoustic Waves from Spherical Sources

where the surface velocity is Ua ¼ 20 [m/s] and frequency of radiation is f ¼ 680 [Hz].

Assuming that this spherical source can be treated as a small spherical source, calculate (a) the ow velocity, (b) acoustic pressure, (c) intensity, and (d) power radiating from the small spherical source.

Use 415 [rayls] for characteristic impedance (ρ0c) and 340 [m/s] for the speed of sound. Show units in the Meter-Kilogram-Second (MKS) system.

Example 6.1 Solution

The angular frequency can be calculated as:

ω ¼ 2πf ¼ 2π 680 h1si ¼ 1360π h1si

The wavenumber can be calculated as:

k c

 

c

 

 

 

 

m

s

 

 

4π m

¼

ω

 

2πf

2π

 

680

1

 

h

1

i

 

¼

 

¼

 

 

 

 

 

¼

 

 

 

 

340

s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part (a)

Compare the given the surface velocity of the sphere:

 

1

m

uðr ¼ a, tÞ ¼ Ua cos 2πft

 

π h

 

i

2

s

to the boundary condition (BC) of a small pulsating spherical source in the summary table below:

Source types

Pressure: p(r, t)

 

Velocity: u(r, t)

 

 

 

 

 

 

 

 

 

 

Small pulsating

rp(r,

 

 

 

 

ruðr, tÞ

 

A

cos ðωt kr þ θ ϕÞ

 

 

 

 

ρo c cos ðϕÞ

spherical source

t)

 

A cos (ωt

 

kr + θ)

where ϕ

¼

tan 1

1

 

!

cos

ϕ

 

kr

 

 

 

 

 

 

kr

 

 

2

 

a 1

where

 

2

 

 

 

 

 

ð Þ ¼ p1þðkrÞ

A

 

Ua ρoc ka

 

Near eld:

 

 

 

 

 

 

 

 

 

 

Based on BC:

¼

 

 

 

 

 

 

 

Far eld:

 

u(a, t)¼

 

 

π

 

 

cos(ϕ) kr

 

 

 

 

 

cos(ϕ) 1

 

 

θ ¼ θo þ

2

 

 

 

 

 

 

 

 

 

Ua cos (ωt + θo)

 

 

 

 

 

 

Remarks:

 

 

 

 

 

 

Remarks:

 

 

!ka 0π

 

 

 

 

 

 

π p-u out of phase

 

p-u in phase,

 

 

! ϕa 2

 

 

 

 

 

 

by 2

 

 

 

 

 

 

 

,ϕ ¼ 0

 

 

! cos (ϕa) ka

 

 

 

 

 

 

spherical wave

 

 

 

 

spherical wave

Comparing the given BC to the formulas in the summary table above gives:

a ¼ 1001 ½m&

6.3 Acoustic Waves from a Small Pulsating Sphere

145

Ua ¼ 20½m=s&

π

θo ¼ 2

The formula of velocity from a small source as shown is shown in the summary table as:

ruðr, tÞ

 

A

 

 

 

 

cos ðωt kr þ θ ϕÞ

ρoc cos ðϕÞ

where

 

 

 

 

 

 

A ¼ Ua ρoc ka2 ¼ 20 415 4π ∙ 0:012 ¼ 10:4

 

 

π

π

π

θ ¼ θo þ 2 ¼

2

þ 2 ¼ 0

Therefore:

 

 

 

 

 

 

 

10:4

 

 

 

 

ruðr, tÞ

 

cos ðωt kr ϕÞ

415 cos ðϕÞ

 

0:0251

 

 

 

m

h i

! uðr, tÞ r cos ðϕÞ cos ð1360πt 4πr ϕÞ s

where:

ϕ ¼ tan 1 1 kr

Part (b)

The formula for acoustic pressure from a small source is shown in the summary table as:

pðr, tÞ

 

A

cos ðωt kr þ θÞ½Pa&

 

r

 

10:4

cos ð1360πt 4πrÞ ½Pa&

 

 

r

Part (c)

The formula of the intensity of spherical waves is derived in Chap. 5 as: