Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
акустика / lin_h_bengisu_t_mourelatos_zp_lecture_notes_on_acoustics_and.pdf
Скачиваний:
81
Добавлен:
04.05.2023
Размер:
12.68 Mб
Скачать

10.2 Absorption Coefcients, Room Constant, and Reverberation Time

257

10.2.2 Room Constant

The absorption coefcient is dened as the ratio of acoustic energy absorbed by a surface to the acoustical energy incident upon the surface when the incident sound eld is perfectly diffused:

α wi wr wi

1 −

 

1 −

 

Half Cube

1

5

The summation of all the reected ratios of a sound, except the direct wave, is equal to ð1 ααÞ as:

ð1 αÞ þ ð1 αÞ2 þ . . . þ ð1 αÞn ¼ ð1 αÞ ; n ¼ 1

α

The following is the proof of the formula above of the summation of the innite series.

Let:

RS ¼ ð1 αÞ þ ð1 αÞ2 þ . . . þ ð1 αÞn

Multiplying both sides of the above equation by ð1 αÞ yields:

RS ð1 αÞ ¼ ð1 αÞ2 þ ð1 αÞ3 þ . . . þ ð1 αÞnþ1

Subtract these two equations to arrive at:

RS α ¼ ð1 αÞ ð1 αÞnþ1

For n ¼ 1 and ð1 αÞ < 1, ð1 αÞnþ1 ¼ 0, we obtain:

258

 

 

 

 

 

 

 

 

10 Room Acoustics and Acoustical Partitions

 

S

 

¼

ð1 αÞ

1

 

α

Þ þ ð

1

 

α

2

þ

. . .

þ ð

1

α n

R

 

α

¼ ð

 

 

Þ

 

 

 

Þ

The variable R in the equation above is known as the room constant. The room constant R is related to the total area of a room S and the total reverberant ratio and is dened as:

 

 

 

 

 

 

 

 

 

 

α

 

 

 

 

 

 

 

 

 

R ¼

 

S m2

 

 

 

 

 

 

 

 

 

1 α

where the

factor

S

¼

 

ð1 αÞ

is

the summation of the innite series:

 

 

 

R

 

 

 

 

 

 

 

2

, ð1

3

α

 

 

 

ð1 αÞ, ð1 αÞ

 

αÞ

, etc. The series components are the ratios of the reected

energies to the initial incident energy for the rst, second, third, etc. reections.

10.2.3 Reverberation Time

The reverberation time T60 is the time required for reections of a direct sound to decay to 60 dB:

60

When the sound pressure level LP reaches the peak:

LP,T0

¼ 10 log 10

wTr0

 

 

 

w

After the sound pressure level LP decreases 60 dB from the peak:

LP,T60

¼ 10 log 10

wr

 

 

wT60

Therefore:

LP,T0 LP,T60 ¼ 60 ½dB&

10.2 Absorption Coefcients, Room Constant, and Reverberation Time

259

 

 

 

 

 

 

! 60 ¼ 10 log

10

wT0

10 log 10

wT60

wr

 

wr

! log 10 wT60

¼ 6

 

 

 

 

wT0

 

 

!wT60 ¼ 10 6

wT0

For each reection from the boundary surface, the ratio of the reected energy to the incident energy is ð1 αÞ, and the average travel time between reections is approximately 4ScV (base on a half cube):

4 × 5 × 10 × 10

=

 

 

 

 

 

 

 

 

2 × 10 × 10 + 4 × 5 × 10

 

 

Half Cube

 

 

 

 

 

Traveling Time between ceiling and loor

5

10

=

Assume that the number of reections required for the reected energy to decay

to60 dB is T60= 4ScV .

Therefore:

ð1 αÞ4ScVT60 ¼ 10 6

Taking the natural logarithm of the above equation yields:

Sc

4V T60 ln ð1 αÞ ¼ 6 ln ð10Þ

or (use c ¼ 343 m/s):

T60

¼

24V ln ð10Þ

¼

0:161V

½

arbitary α < 1

&

 

Sc ln ð1 αÞ

S ln ð1 αÞ

 

The equation above is the general formula for calculating T60 for an arbitrary absorption coefcient α.

Special Case: Small Absorption Coefcient

For a small α ðα < 0:2Þ, the formula above can be simplied as:

260

10 Room Acoustics and Acoustical Partitions

1

ð1 αÞ α e

Hence:

Sc

1

 

αSc T60

Sc

¼ 10 6

ð1 αÞ4VT60

¼ ð1 αÞ α

4V

e α4VT60

Again, taking the natural logarithm of the above equation yields:

Sc

α 4V T60 ¼ 6 ln ð10Þ

Hence:

T60

¼

24V ln ð10Þ

¼

0:161V

½

for α < 0:2 only

&

 

S α

 

Sc α

 

 

Example 10.1

A (half cube) room has the dimensions 10 10 5 m.

(a)If the absorption coefcient is α ¼ 0:5, determine the reverberation time T60.

(b)If the reverberation time is T60 ¼ 0.32 s, determine the average absorption coefcient α:

Example 10.1: Solution

(a) For the reverberation time:

V ¼ 103=2 ¼ 500 m3

S ¼ 102 4 ¼ 400 m2 ð 4V=S ¼ 10=2 ¼ 5 mÞ

T60

0:161V

¼

0:161 500

¼

0:29 s

 

¼ S ln ð1 αÞ

400 ln ð1 0:5Þ

 

(b) For the average absorption coefcient:

V ¼ 103=2 ¼ 500 m3

S ¼ 102 4 ¼ 400 m2 ð 4V=S ¼ 10=2 ¼ 5 mÞ

α ¼ 1 e

0:161V

 

0:161

 

500

¼ 0:467

ST

60

 

 

 

¼ 1 e 400 0:32