Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
акустика / lin_h_bengisu_t_mourelatos_zp_lecture_notes_on_acoustics_and.pdf
Скачиваний:
84
Добавлен:
04.05.2023
Размер:
12.68 Mб
Скачать

3.8 Homework Exercises

75

3.8Homework Exercises

Exercise 3.1 A complex exponential function p(x, t) is given as:

pðx, tÞ ¼ e jðωtþkx π2Þ ½CEP&

Show that when ωk ¼ c, the above complex exponential function p(x, t) satises the one-dimensional acoustic wave equation:

2 pðx, tÞ ¼ 1 2 pðx, tÞ ∂x2 c2 t2

76

3 Solutions of Acoustic Wave Equation

Exercise 3.2 A complex exponential function p(x, t) is given as:

pðx, tÞ ¼ e jðωt kx π2Þ

½CEP&

Show that when ωk ¼ c, the above complex exponential function p(x, t) satises the one-dimensional acoustic wave equation:

2 pðx, tÞ ¼ 1 2 pðx, tÞ ∂x2 c2 t2

Exercise 3.3 A complex exponential function p(x, t) is give as:

pðx, tÞ ¼ e jðωt kx π2Þ

½CEP&

Show that when ωk ¼ c, the above complex exponential function p(x, t) satises the one-dimensional acoustic wave equation:

2 pðx, tÞ ¼ 1 2 pðx, tÞ ∂x2 c2 t2

Exercise 3.4 A backward traveling wave p (x, t) with a phase shift (Form 2:REP) is given as:

p ðx, tÞ ¼ A cos ðωt þ kx þ ϕ Þ

where A is an amplitude. Show that if ωk ¼ c, the above trigonometric cosine function p(x, t) satises the one-dimensional acoustic wave equation:

2 pðx, tÞ ¼ 1 2 pðx, tÞ ∂x2 c2 t2

Exercise 3.5 Prove that the following relationship between a standing wave and the combination of a forward wave and a backward wave is true:

sin ðωtÞ sin ðkxÞ ¼ 21 ð cos ðωt þ kxÞ cos ðωt kxÞÞ

Exercise 3.6 Prove that the following relationship between a standing wave and the combination of a forward wave and a backward wave is true:

3.8 Homework Exercises

77

sin ðωtÞ cos ðkxÞ ¼ 12 ð sin ðωt þ kxÞ þ sin ðωt kxÞÞ

Exercise 3.7 Find the relations between phases θt, θx, ϕ+, and ϕ that satisfy the following relationship between a standing wave and the combination of a forward wave and a backward wave:

cos ðωt þ θtÞ cos ðkx þ θxÞ ¼ cos ðωt þ kx þ ϕ Þ þ cos ωt kx þ ϕþ

ð3:2Þ

(Answers): (You must show all of your work for full credit!)

ϕ ¼ θt þ θx ϕþ ¼ θt θx

Exercise 3.8 Find the relations between phases θt, θx, ϕ+, and ϕ that satisfy the following relationship between a standing wave and the combination of a forward wave and a backward wave:

2 sin ðωt þ θtÞ cos ðkx þ θxÞ ¼ sin ðωt þ kx þ ϕ Þ þ sin ωt kx þ ϕþ

(Answers): (You must show all of your work for full credit!)

ϕ ¼ θt þ θx ϕþ ¼ θt θx

Exercise 3.9 The following is a harmonic function p(x, t) of one-dimensional sound pressure in Cartesian coordinates:

hi

pðx, tÞ ¼ Re PsinðkxÞe jðωtÞ

where P is a real number.

a)Show that the harmonic function p(x, t) can be constructed by multiplying two trigonometric cosine functions as:

pðx, tÞ ¼ PcosðωtÞ sin ðkxÞ

78

3 Solutions of Acoustic Wave Equation

b)Show that the harmonic function p(x, t) can be constructed by adding two trigonometric cosine functions as:

 

P

 

π

 

 

π

pðx, tÞ ¼

 

h cos

kx þ ωt

2 þ cos

kx ωt

2i

2

Note that each term in the above function has a phase of π

and is considered as

 

 

 

 

 

2

 

 

Form 2.

Exercise 3.10 The following is a harmonic function p(x, t) of one-dimensional sound pressure in Cartesian coordinates:

hi

pðx, tÞ ¼ Re jP cos ðkxÞe jðωtÞ

where P is a real number.

(a)Show that the harmonic function p(x, t) can be constructed by multiplying two trigonometric cosine functions:

pðx, tÞ ¼ P sin ðωtÞ cos ðkxÞ

(b)Show that the harmonic function p(x, t) can be constructed by adding two trigonometric sine functions:

pðx, tÞ ¼ 2P ½ sin ðωt þ kxÞ þ sin ðωt kxÞ&

Note that each term in the above function has no phase and can be considered as Form 1.

Exercise 3.11 The following is a harmonic function p(x, t) of one-dimensional sound pressure in Cartesian coordinates:

pðx, tÞ ¼ Re hA sin kx

π

2 e jðωtÞi

where A is a real number.

(a)Show that the harmonic function p(x, t) can be constructed by multiplying two trigonometric cosine functions:

pðx, tÞ ¼ A cos ðkxÞ cos ðωtÞ

(b)Show that the harmonic function p(x, t) can be constructed by adding two trigonometric cosine functions:

3.8 Homework Exercises

 

 

 

 

 

 

 

 

 

 

 

 

79

ð

 

Þ ¼ 2 ½

 

ð

 

þ

 

Þ þ

 

ð

 

 

 

Þ&

p

x, t

A

cos

 

ωt

 

kx

 

cos

 

ωt

 

kx

 

Exercise 3.12 Use the following combination of a forward wave p+(x, t) and a backward wave p (x, t) to answer every question of this problem:

p ðx, tÞ ¼ sin ωt þ kx

π

2

pþðx, tÞ ¼ sin ðωt kxÞ

a)Calculate the standing wave (real number) produced by the forward wave and the backward.

b)Find the locations of the peaks and valleys in terms of wavelength.

 

(Answers):

 

 

 

 

¼

 

 

 

¼

8

 

a)

2 cos

ωt þ 4π

 

cos kx 54π

a)

Peak: x

5λ

; Valley: x

 

λ

 

 

 

 

 

 

 

 

 

 

8

Chapter 4

Acoustic Intensity and Specific Acoustic

Impedance

In the previous chapter, we constructed the sound pressures p(x, t) of both traveling waves and standing waves based on the acoustic wave equation. In this chapter, you will learn how to calculate ow velocity u(x, t), acoustic intensity, and specic acoustic impedance for given sound pressure. These quantities are commonly used in the analysis of acoustics and noise control. This chapter is organized as follows:

First, you will learn how to calculate the ow velocity u(x, t) for a given sound pressure p(x, t) using Eulers force equation that was derived in Chap. 2. This process can be reversed to calculate the sound pressure p(x, t) for a given ow velocity u(x, t) using Eulers force equation as shown in the gure below:

Euler′s Force Equation:

Pressure-Velocity Relationship

Pressure:

Velocity

 

1

Acoustic Intensity

 

Specific Acoustic Impedance

 

≡ ; ≡ ;

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

81

H. Lin et al., Lecture Notes on Acoustics and Noise Control, https://doi.org/10.1007/978-3-030-88213-6_4

82

4 Acoustic Intensity and Specic Acoustic Impedance

Second, you will learn how to calculate acoustic intensity I from sound pressure p(x, t) and its corresponding ow velocity u(x, t). The acoustic intensity I is simply the average of the sound pressure p(x, t) multiplied by the ow velocity u(x, t) over the period T as shown in the gure above. The formula of acoustic intensity I for both traveling waves and standing waves will be derived.

Third, you will learn how to calculate specic acoustic impedance z as real numbers. The real number specic acoustic impedance z is simply the sound pressure p(x, t) divided by the ow velocity u(x, t) as shown in the gure above. The formulas of specic acoustic impedance z for both traveling waves and standing waves will be derived. Note that the specic acoustic impedance can be formulated in either the real number format or the complex number format. Formulations of the real number specic acoustic impedance z for traveling waves and standing waves are shown in the table below and will be developed in Sect. 4.4.

Fourth, the acoustic impedance z expressed as complex numbers will be introduced in Sect. 4.5. This is an advanced topic but is important for analyzing acoustic waves in pipes. The formulas of complex number acoustic impedance will be discussed and derived. An application of complex number acoustic impedance for lter designs is applied in Chaps. 12 and 13.

4.1Pressure-Velocity Relationship

The relationship between p(x, t) and u(x, t), based on Eulers force equation, is:

x pðx, tÞ ¼ ρo t uðx, tÞ

4.1 Pressure-Velocity Relationship

 

 

83

For a given pressure p(x, t), the ow velocity u(x, t) can be formulated as:

 

1

 

 

uðx, tÞ ¼

 

Z

 

 

pðx, tÞ dt

ρo

x

Formulas of pressure-velocity relationships for traveling waves u (x, t)and standing waves us(x, t) will be developed based on Eulers force equation shown above. The following is a summary of formulas of pressure-velocity relationships that will be derived in this section:

 

 

 

1

 

 

 

(BTW)

u ðx, tÞ ¼

ρoc p ðx, tÞ

 

 

 

usðx, tÞ ¼

1

 

sin ðωtÞ sin ðkxÞ if psðx, tÞ ¼ cos ðωtÞ cos ðkxÞ

(BTW)

ρoc

 

 

usðx, tÞ ¼

1

 

cos ðωtÞ cos ðkxÞ if

psðx, tÞ ¼ sin ðωtÞ sin ðkxÞ

(BTW)

ρoc

 

 

usðx, tÞ ¼

 

1

 

sin ðωtÞ cos ðkxÞ if

psðx, tÞ ¼ cos ðωtÞ sin ðkxÞ

(BTW)

ρoc

 

usðx, tÞ ¼

 

1

 

cos ðωtÞ sin ðkxÞ if

psðx, tÞ ¼ sin ðωtÞ cos ðkxÞ

(BTW)

ρoc

 

Note that the ow velocity u (x, t) above was referred to as vf in Chap. 2. The u (x, t) is the macroscopic ow velocity vf and should not be confused with the microscopic colliding velocity vc. Also, (BTW) indicates basic traveling waves, and BSW indicates basic standing waves as discussed in Chap. 3.

4.1.1Pressure-Velocity Relationships for BTW

Even though there are no linear relationships between pressure and velocity for general complex waves, there are linear relationships between pressure and velocity for forward and backward traveling waves. The formulations are shown below.

Forward Traveling Waves

pþðx, tÞ ¼ cos ðωt kx þ ϕÞ

Or:

1

! uþðx, tÞ ¼ þ ρoc pþðx, tÞ

! pþðx, tÞ ¼ ρoc uþðx, tÞ

84

4 Acoustic Intensity and Specic Acoustic Impedance

Sound Pressure

Molecular Flow Velocity

Backward Traveling Waves

p ðx, tÞ ¼ cos ðωt þ kx þ ϕÞ

Or:

1

! u ðx, tÞ ¼ ρoc p ðx, tÞ ! p ðx, tÞ ¼ ρoc u ðx, tÞ

The following is an example of how to prove the formulations above. The pressure of a backward traveling wave is:

p ðx, tÞ ¼ cos ðωt þ kx þ ϕÞhor ¼

1

e jðωtþkxþϕÞ þ e jðωtþkxþϕÞi

2

According to Eulers force equation, the velocity can be calculated by rst taking the derivative of the pressure with respect to x and then taking its integration with respect to time t as:

x p ðx, tÞ ¼ k sin ðωt þ kx þ ϕÞ

4.1 Pressure-Velocity Relationship

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

85

or ¼ 2 e jðωtþkxþϕÞ e jðωtþkxþϕÞ

 

 

 

 

jk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

! u ðx, tÞ ¼

1

 

 

Z

 

p ðx, tÞ dt

 

 

 

 

 

 

 

 

 

 

 

 

ρo

x

 

 

 

¼

1

 

 

 

cos ðωt þ kx þ ϕÞ

 

 

 

 

 

 

 

 

ρoc

 

e jðωtþkxþϕÞ

 

 

 

or

 

 

 

 

 

 

 

 

c

2 e jðωtþkxþϕÞ

 

 

 

 

¼

1

 

1

 

 

þ

 

 

 

 

 

 

ρo

 

 

 

 

 

 

 

¼

 

1

 

p ðx, tÞ

 

 

 

 

 

 

 

 

 

 

 

ρoc

 

 

 

So, for backward traveling waves, the pressure and velocity relationship is:

1

u ðx, tÞ ¼ ρoc p ðx, tÞ

Sound Pressure

Molecular Flow Velocity

Similarly, the relationship between pressure and velocity for forward traveling waves can be derived as:

1

uþðx, tÞ ¼ ρoc pþðx, tÞ

Therefore, we get the relationship between pressure and velocity as:

! u ðx, tÞ ¼

1

½BTW&

ρoc p ðx, tÞ

86

4 Acoustic Intensity and Specic Acoustic Impedance

4.1.2Pressure-Velocity Relationships for BSW

The pressure-velocity relationships for standing waves are different from the pressure-velocity relationships for the previous traveling waves.

The relationships between pressure and velocity for basic standing waves are:

1

psðx, tÞ ¼ cos ðωtÞ cos ðkxÞ ! uðx, tÞ ¼ ρoc sin ðωtÞ sin ðkxÞ

1

psðx, tÞ ¼ sin ðωtÞ sin ðkxÞ ! uðx, tÞ ¼ ρoc cos ðωtÞ cos ðkxÞ

1

psðx, tÞ ¼ sin ðωtÞ cos ðkxÞ ! uðx, tÞ ¼ ρoc cos ðωtÞ sin ðkxÞ

1

psðx, tÞ ¼ cos ðωtÞ sin ðkxÞ ! uðx, tÞ ¼ ρoc sin ðωtÞ cos ðkxÞ

The following is an example to validate the statement above.

Example 4.1

Given a basic standing wave with two cosine functions:

psðx, tÞ ¼ cos ðωtÞ cos ðkxÞ

Find the corresponding particle velocity using Eulers force equation.

Example 4.1 Solution

The ow velocity can be calculated using Eulers force equation:

ð

 

Þ ¼ ρo

Z

x

 

ð

 

 

Þ

 

 

 

us

x, t

1

 

 

p

x, t

 

 

dt

 

 

Z

x ½

 

 

 

Þ&

 

 

¼ ρo

 

 

 

ð

 

 

Þ

ð

 

 

 

1

 

 

cos

ωt

 

cos

kx

dt

 

 

 

 

 

 

 

 

 

¼ ρo

Z

 

ð

 

Þ x ½

ð

 

Þ&

 

 

1

 

 

 

cos

 

ωt

 

 

cos

kx

dt

 

 

 

 

 

 

 

 

 

 

 

 

¼ ρo

Z f

 

 

 

ð

 

 

Þ

 

ð

Þg

 

 

 

1

 

 

 

 

k cos

 

ωt

 

sin kx

 

dt

 

 

¼ ρo k sin ðkxÞ Z

 

cos ðωtÞdt

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1 Pressure-Velocity Relationship

87

1k

¼ρo ω sin ðkxÞ sin ðωtÞ

1

¼ ρoc sin ðkxÞ sin ðωtÞ

From the results above, we can conclude that:

1

usðx, tÞ ¼6 ρoc pðx, tÞ

Sound Pressure

Molecular Flow Velocity

The following is another example of validating these pressure-velocity relationships.

Example 4.2

Given a basic standing wave with cosine and sine functions: psðx, tÞ ¼ cos ðωtÞ sin ðkxÞ

Find the corresponding particle velocity using Eulers force equation.

Example 4.2 Solution

The ow velocity can be calculated using Eulers force equation:

 

1

 

 

 

k

 

uðx, tÞ ¼

 

 

 

Z

 

pðx, tÞ dt ¼

 

 

 

sin ðωtÞ cos ðkxÞ

ρo

x

ρoω

¼

1

 

sin ðωtÞ cos ðkxÞ ¼6

1

 

pðx, tÞ

 

 

 

 

ρoc

ρoc

88

4 Acoustic Intensity and Specic Acoustic Impedance

4.1.3Pressure-Velocity Relationships in Complex Function Form

The general complex solution of sound pressure for acoustic waves is:

p(x, t) ¼ A1B1e

j(ωt + kx)

A1B2e

j(ωt kx)

 

 

j(ωt

 

kx+)

 

j(ωt + kx)

(Form 4 : CIP)

+A2B1e

 

 

+ A2B2e

 

or:

 

 

 

 

 

 

 

 

x, tÞ ¼ Pþe jðωt kxÞ þ Pþe jðωt kxÞ

 

(Form 4 : CIP)

þP 2 e jðωtþkxÞ þ P 2 e jðωtþkxÞ

The general complex solution of the corresponding velocity can be expressed as:

x, tÞ ¼

1

Pþe jðωt kxÞ þ Pþe jðωt kxÞ P2 e jðωtþkxÞ P 2 e jðωtþkxÞ

ρoc

where each term of the velocity can be calculated from the above pressure equation using Eulers force equation:

1

u ðx, tÞ ¼ ρoc p ðx, tÞ

The following two examples prove the formula above by substituting one term of the complex pressure p into the Eulers force equation to calculate one term of the complex velocity u .

Example 4.3

Assume that a pressure function is constructed with only the rst term of the general solution of sound pressure as shown at the beginning of this section and that the other coefcients (complex numbers) are all zero. In this case:

p 2 ðx, tÞ ¼ e jðωtþkxÞ

Use Eulers force equation to get the ow velocity u2(x, t) from the given pressure p2(x, t).

Example 4.3 Solution

p

x, t

Þ ¼

jk e jðωtþkxÞ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

2 ð

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u

2 ðx, tÞ ¼

1

 

 

 

ðx, tÞ dt ¼

1

Z

jk e jðωtþkxÞ

dt

 

ρo Z

x p2

ρo

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h

 

 

i

 

 

 

 

 

 

 

k

 

 

 

 

1

 

 

 

 

1

 

 

 

 

 

 

¼

 

e jðωtþkxÞ ¼

 

e jðωtþkxÞ ¼

 

p 2

ðx, tÞ

 

 

 

ρoω

ρoc

ρoc