Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
акустика / lin_h_bengisu_t_mourelatos_zp_lecture_notes_on_acoustics_and.pdf
Скачиваний:
84
Добавлен:
04.05.2023
Размер:
12.68 Mб
Скачать

368

 

 

 

 

 

 

 

 

Appendices

1

Ak2

þ Bk2

 

¼ 2 1:52

þ 02

 

¼ 4:5

Pa2

 

pRMS2 = Ao2 þ 2

 

 

 

X

 

 

 

 

 

 

k¼1

 

 

 

 

 

 

 

 

 

Calculate:

 

 

 

 

 

 

 

 

 

The unweighted sound pressure level

Example 3: Solution

The unweighted sound pressure level is:

¼

P r

¼

Pr

 

 

¼

0 20 10

 

 

1

 

 

P2

 

 

 

P2

 

 

 

 

 

32

 

 

 

 

 

 

Lp

10 log 10

RMS

 

10 log 10

 

RMS

 

10 log 10

 

 

 

6

 

2

 

 

2

 

 

2

 

 

 

 

 

 

¼ 100:5½dB&

 

 

 

 

 

 

 

 

 

 

 

@

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or equivalently:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

3

 

 

 

!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lp ¼ 10 log 10

PRMS

 

¼ 20 log

10

PRMS

 

¼ 20 log 10

 

p2

 

 

 

Pr

 

 

Pr

 

20

 

10 6

¼ 100:5 ½dB&

Appendix 2: Power Spectral Density

In Sect. 9.3, the sound pressure level (SPL) spectrum of the octave band was obtained by manually adding the frequency contents to their corresponding bands. Practically, it is done using numerical methods. Appendix 2 will demonstrate how to compute the SPL spectrum numerically using accumulated energy. This appendix can be treated as a supplement to Sect. 9.3.

Power Spectral Density

The m-octave band spectrum is the power in each m-octave band and is typically represented in levels (dB) (i.e., the logarithmic scale) and should be operated on log level addition, subtraction, and averaging rules (see Sect. 9.1.3). The value is typically power-like (power, energy, or intensity of the wave), but it could also be non-power-like (RMS or peak amplitude of displacement, velocity, or acceleration of the wave). When the amplitudes of displacement are used, the amplitudes are usually squared, so that they are power-like and can be integrated or added among

Appendices

369

band frequencies. Whereas the amplitudes are squared, the spectrum is still called a displacementspectrum but not a displacement square spectrum. When adding octave band levels for specic physical quantities, care should be given to whether square quantities are being added.

The power spectral density, S( f ), is the power per frequency (usually in Hz), where the m-octave band spectrum is the power per m-octave band. Therefore, the

total power is computed as R1Sð f Þdf .

0

Accumulated Sound Pressure Square

From Section A.1.1.1, the total RMS pressure square is computed as follows:

pRMS2 = T

Z0

p2ðtÞdt = T

Z0

Ao

þ 2 k

 

 

1

½Ak cos ðωktÞ Bk sin ðωktÞ&!

2

 

 

dt

1

T

 

 

 

 

1

 

 

T

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¼

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

Ak2 þ Bk2

 

¼ Z0

1

 

 

1

 

 

 

 

 

 

=Ao2 þ 2 k 1

 

 

 

 

Sð f Þdf ¼ k 0 Sð f kÞ f

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

¼

 

 

 

 

 

 

 

 

 

 

 

 

 

¼

 

 

 

 

where Sð f kÞ ¼ 2 Ak2 þ Bk2

 

=

f ¼ 2 Ak2 þ Bk2

 

T.

 

 

 

 

 

 

However, for

the different weighting can be applied to each band, we need to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

compute the partial p2

inside each band. One way to do that is rst to compute the

 

 

 

RMS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

accumulated sound pressure square up to the frequency f n þ 21

f as:

 

 

 

 

 

1

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

1

 

 

pRMS2 ,Accu f n þ

 

 

f =Ao2 þ 2 k¼1

 

 

Ak2 þ Bk2

 

up to

 

 

2

 

 

 

 

 

f n þ 2 f

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

Sound Pressure Level in Each Band

The partial p2RMS inside the band center at fo with the frequency limits [flower, fupper] can be obtained as:

where pRMS2

pRMS2 ,Band ¼ pRMS2 ,Accu

f upper pRMS2

,Accuð f lowerÞ

 

 

 

RMS,

 

 

 

2

 

,Accu f upper

and pRMS2 ,Accu

 

f lowper

can be

obtained by the linear

interpolation from the accumulated values: p2

 

f

 

þ

1

 

 

 

 

 

 

Accu

 

k

 

 

 

370

Appendices

The sound pressure level in each band center at the frequency fo is:

 

p2

! þ Aweightingð f oÞ

SPL f o ¼ 10 log 10

RMS,Band

pref2

Example 1: Calculate Power Spectral Density

A discretized time ( t ¼ 1/800) domain data of the sound pressure [Pa] is given as:

[5,5.110,0.828,0.649,1,-2.945,-4.586,0.434,3,-2.281,-4.828,2.180,7,0.117, -7.414,-3.262]

From p(t) ¼ cos (2π ∙ 50t) + 2 sin (2π ∙ 100t) + 3 sin (2π ∙ 150t) + 4 cos (2π ∙ 200t)

Calculate:

(a)The RMS pressure square in the frequency domain

(b)The power spectral density of the given sound pressure p(t)

Example 1: Solution

The solution is obtained from the data set and plots of the MATLAB program. The step-by-step results are summarized as follows:

t ¼ 1/800 [s], N ¼ 16, T ¼ N t ¼ 1/50 [s], f ¼ 1/T ¼ 50 [Hz]

Ak

¼ ½0, 0:5, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0:5&

Bk

¼ ½0, 0, 1, 1:5, 0, 0, 0, 0, 0, 0, 0, 0, 1:5, 1, 0, 0&

 

 

q

 

 

 

Ak2 þ Bk2 ¼ ½0, 0:5, 1, 1:5, 2, 0, 0, 0, 0&

 

 

2

2

 

2

 

2 Ak

þ B2k ¼2½0, 0:5, 2, 4:5, 8, 0, 0, 0, 0&

PRMS,Accu

¼ X

2 Ak þ Bk ¼ ½0, 0:5, 2:5, 7, 15, 15, 15, 15, 15&

f Accu ¼ f k þ 25 ¼ ½25, 75, 125, 175, 225, 275, 325, 375, 425&

 

 

 

f k

¼ ½31, 63, 125, 250&

 

 

 

f lower

¼ ½22, 44, 88, 177, 354&

 

PRMS2 ,lower ¼ ½0, 0:1919, 1:0355, 7:2843, 15&

ðaÞ

PRMS2

,Band ¼ ½0:1919, 0:8436, 6:2487, 7:7157&

SPLBand,unWeighting ¼ ½112:8, 119:2, 127:9, 128:8&

aWeightingBand ¼ ½ 39:5, 26:2, 16:2, 8:7&

ðbÞ

SPLBand,Weighted ¼ ½73:3, 93:0, 111:7, 120:1&

Exercise