Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
акустика / lin_h_bengisu_t_mourelatos_zp_lecture_notes_on_acoustics_and.pdf
Скачиваний:
84
Добавлен:
04.05.2023
Размер:
12.68 Mб
Скачать

Contents

1 Complex Numbers for Harmonic Functions . . . . . . . . . . . . . . . . . .

1

1.1

Review of Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . .

2

1.2

Complex Numbers in Polar Form . . . . . . . . . . . . . . . . . . . . . .

3

1.3

Four Equivalent Forms to Represent Harmonic Waves . . . . . . .

4

1.4

Mathematical Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

1.5

Derivation of Four Equivalent Forms . . . . . . . . . . . . . . . . . . .

8

 

1.5.1 Obtain Form 2 from Form 1 . . . . . . . . . . . . . . . . . . .

8

 

1.5.2 Obtain Form 3 from Form 2 . . . . . . . . . . . . . . . . . . .

9

 

1.5.3 Obtain Form 4 from Form 3 . . . . . . . . . . . . . . . . . . .

9

1.6Visualization and Numerical Validation of Form 1

and Form 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

1.7Space-Time Harmonic Functions Expressed in Four

 

Equivalent Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

1.8

Homework Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

1.9

References of Trigonometric Identities . . . . . . . . . . . . . . . . . .

21

 

1.9.1

Trigonometric Identities of a Single Angle . . . . . . . . .

21

 

1.9.2

Trigonometric Identities of Two Angles . . . . . . . . . . .

23

1.10A MATLAB Code for Visualization of Form 1

 

 

and Form 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

2

Derivation of Acoustic Wave Equation . . . . . . . . . . . . . . . . . . . . . .

27

 

2.1

Eulers Force Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

 

2.2

Equation of Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

 

2.3

Equation of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34

 

 

2.3.1

Energy Increase due to Work Done . . . . . . . . . . . . . .

35

 

 

2.3.2

Pressure due to Colliding of Gases . . . . . . . . . . . . . .

37

 

 

2.3.3

Derivation of Equation of State . . . . . . . . . . . . . . . . .

38

 

2.4

Derivation of Acoustic Wave Equation . . . . . . . . . . . . . . . . . .

39

 

2.5

Formulas for the Speed of Sound . . . . . . . . . . . . . . . . . . . . . .

42

 

 

2.5.1

Formula Using Pressure . . . . . . . . . . . . . . . . . . . . . .

42

 

 

2.5.2

Formula Using Bulk Modulus . . . . . . . . . . . . . . . . . .

43

ix

x

 

 

Contents

 

2.5.3

Formula Using Temperature . . . . . . . . . . . . . . . . . .

. 45

 

2.5.4 Formula Using Colliding Speed . . . . . . . . . . . . . . . .

. 46

2.6

Homework Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 47

3 Solutions of Acoustic Wave Equation . . . . . . . . . . . . . . . . . . . . . .

. 49

3.1

Review of Partial Differential Equations . . . . . . . . . . . . . . . .

. 51

 

3.1.1 Complex Solutions of a Partial Differential

 

 

 

Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 51

 

3.1.2 Trigonometric Solutions of a Partial Differential

 

 

 

Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 53

3.2

Four Basic Complex Solutions . . . . . . . . . . . . . . . . . . . . . . .

. 54

3.3

Four Basic Traveling Waves . . . . . . . . . . . . . . . . . . . . . . . .

. 59

3.4

Four Basic Standing Waves . . . . . . . . . . . . . . . . . . . . . . . . .

. 60

3.5

Conversion Between Traveling and Standing Waves . . . . . . .

. 63

3.6

Wavenumber, Angular Frequency, and Wave Speed . . . . . . .

. 68

3.7

Visualization of Acoustic Waves . . . . . . . . . . . . . . . . . . . . .

. 71

 

3.7.1

Plotting Traveling Wave . . . . . . . . . . . . . . . . . . . . .

. 71

 

3.7.2

Plotting Standing Wave . . . . . . . . . . . . . . . . . . . . .

. 72

3.8

Homework Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 75

4 Acoustic Intensity and Specic Acoustic Impedance . . . . . . . . . . .

. 81

4.1

Pressure-Velocity Relationship . . . . . . . . . . . . . . . . . . . . . . .

. 82

 

4.1.1 Pressure-Velocity Relationships for BTW . . . . . . . .

. 83

 

4.1.2 Pressure-Velocity Relationships for BSW . . . . . . . . .

. 86

 

4.1.3 Pressure-Velocity Relationships in Complex

 

 

 

Function Form . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 88

4.2

RMS Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 89

 

4.2.1 RMS Pressure of BTW . . . . . . . . . . . . . . . . . . . . . .

. 90

 

4.2.2 RMS Pressure of BSW . . . . . . . . . . . . . . . . . . . . . .

. 91

4.3

Acoustic Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 94

 

4.3.1 Acoustic Intensity of BTW . . . . . . . . . . . . . . . . . . .

. 94

 

4.3.2 Acoustic Intensity of BSW . . . . . . . . . . . . . . . . . . .

. 95

4.4

Specic Acoustic Impedance Expressed as Real Numbers . . .

. 96

 

4.4.1 Specic Acoustic Impedance of BTW . . . . . . . . . . .

. 97

 

4.4.2 Specic Acoustic Impedance of BSW . . . . . . . . . . .

. 98

4.5Specic Acoustic Impedance Expressed as Complex

 

Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

103

 

4.5.1 Issues with Real Impedance . . . . . . . . . . . . . . . . . . .

103

 

4.5.2 Denition of Complex Impedance . . . . . . . . . . . . . . .

103

4.6

Computer Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

105

4.7

Homework Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

111

4.8

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

114

 

4.8.1 Derivatives of Trigonometric and Complex

 

 

Exponential Functions . . . . . . . . . . . . . . . . . . . . . . .

114

 

4.8.2 Trigonometric Integrals . . . . . . . . . . . . . . . . . . . . . . .

115

Contents

 

xi

5

Solutions of Spherical Wave Equation . . . . . . . . . . . . . . . . . . . . . . .

117

 

5.1

Spherical Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . .

118

 

5.2

Wave Equation in Spherical Coordinate System . . . . . . . . . . .

119

5.3Pressure Solutions of Wave Equation in Spherical

Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.4 Flow Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.4.1 Flow Velocity in Real Format . . . . . . . . . . . . . . . . . . 124 5.4.2 Flow Velocity in Complex Format . . . . . . . . . . . . . . . 126

5.5 RMS Pressure and Acoustic Intensity . . . . . . . . . . . . . . . . . . . 128 5.6 Specic Acoustic Impedance . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.7 Homework Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6 Acoustic Waves from Spherical Sources . . . . . . . . . . . . . . . . . . . . .

137

6.1Review of Pressure and Velocity Formulas

 

for Spherical Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

139

6.2

Acoustic Waves from a Pulsating Sphere . . . . . . . . . . . . . . . .

139

6.3

Acoustic Waves from a Small Pulsating Sphere . . . . . . . . . . . .

141

 

6.3.1

Near-Field Solutions of a Small Spherical

 

 

 

Source (kr 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . .

142

 

6.3.2

Far-Field Solutions of a Small Spherical

 

 

 

Source (kr 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . .

143

6.4

Acoustic Waves from a Point Source . . . . . . . . . . . . . . . . . . .

146

 

6.4.1

Point Sources Formulated with Source Strength . . . . .

146

 

6.4.2

Flow Rate as Source Strength . . . . . . . . . . . . . . . . . .

147

 

6.4.3

Point Source in an Innite Bafe . . . . . . . . . . . . . . . .

149

6.5

Acoustic Intensity and Sound Power . . . . . . . . . . . . . . . . . . . .

150

6.6

Computer Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

157

6.7

Project .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

160

6.8

Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

161

6.9

Homework Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

162

7 Resonant Cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

167

7.1

1D

Standing Waves Between Two Walls . . . . . . . . . . . . . . . .

168

7.2

Natural Frequencies and Mode Shapes in a Pipe . . . . . . . . . . .

170

7.3

2D

Boundary Conditions Between Four Walls . . . . . . . . . . . .

177

7.3.12D Standing Wave Solutions of the Wave

 

 

Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

177

 

7.3.2 2D Nature Frequencies Between Four Walls . . . . . . .

179

 

7.3.3

2D

Mode Shapes Between Four Walls . . . . . . . . . . . .

181

7.4

3D Boundary Conditions of Rectangular Cavities . . . . . . . . . .

184

 

7.4.1

3D

Standing Wave Solutions of the Wave

 

 

 

Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

184

 

7.4.2

3D

Natural Frequencies and Mode Shapes . . . . . . . . .

184

7.5

Homework Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

192

xii

 

 

Contents

8 Acoustic Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 197

8.1

2D Traveling Wave Solutions . . . . . . . . . . . . . . . . . . . . . . .

. 199

 

8.1.1

Denition of Wavenumber Vectors . . . . . . . . . . . . .

. 199

 

8.1.2

Wavenumber Vectors in 2D Traveling Wave

 

Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 8.2 Wavenumber Vectors in Resonant Cavities . . . . . . . . . . . . . . . 206 8.3 Traveling Waves in Resonant Cavities . . . . . . . . . . . . . . . . . . 210 8.4 Wavenumber Vectors in Acoustic Waveguides . . . . . . . . . . . . 214 8.5 Traveling Waves in Acoustic Waveguides . . . . . . . . . . . . . . . 220 8.6 Homework Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

9 Sound Pressure Levels and Octave Bands . . . . . . . . . . . . . . . . . . . .

227

9.1

Decibel Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

228

 

9.1.1 Review of Logarithm Rules . . . . . . . . . . . . . . . . . . . .

228

 

9.1.2 Levels and Decibel Scale . . . . . . . . . . . . . . . . . . . . .

229

 

9.1.3

Decibel Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . .

230

9.2

Sound Pressure Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

231

 

9.2.1

Power-Like Quantities . . . . . . . . . . . . . . . . . . . . . . .

231

 

9.2.2 Sound Power Levels and Decibel Scale . . . . . . . . . . .

232

 

9.2.3 Sound Pressure Levels and Decibel Scale . . . . . . . . . .

233

 

9.2.4 Sound Pressure Levels Calculated

 

 

 

in Time Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . .

233

 

9.2.5 Sound Pressure Level Calculated in Frequency

 

 

 

Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

235

9.3

Octave Bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

237

 

9.3.1 Center Frequencies and Upper and Lower

 

 

 

Bounds of Octave Bands . . . . . . . . . . . . . . . . . . . . . .

237

 

9.3.2 Lower and Upper Bounds of Octave Band

 

 

 

and 1/3 Octave Band . . . . . . . . . . . . . . . . . . . . . . . .

238

 

9.3.3 Preferred Speech Interference Level (PSIL) . . . . . . . .

241

9.4

Weighted Sound Pressure Level . . . . . . . . . . . . . . . . . . . . . . .

242

 

9.4.1

Logarithm of Weighting . . . . . . . . . . . . . . . . . . . . . .

243

 

9.4.2

A-Weighted Decibels (dBA) . . . . . . . . . . . . . . . . . . .

244

9.5

Homework Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

246

10 Room Acoustics and Acoustical Partitions . . . . . . . . . . . . . . . . . . . . 251 10.1 Sound Power, Acoustic Intensity, and Energy Density . . . . . . . 252 10.1.1 Denition of Sound Power . . . . . . . . . . . . . . . . . . . . 252 10.1.2 Denition of Acoustic Intensity . . . . . . . . . . . . . . . . . 253 10.1.3 Denition of Energy Density . . . . . . . . . . . . . . . . . . . 254

10.2Absorption Coefcients, Room Constant,

and Reverberation Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

10.2.1 Absorption Coefcient of Surface . . . . . . . . . . . . . . . 254

10.2.2 Room Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

10.2.3 Reverberation Time . . . . . . . . . . . . . . . . . . . . . . . . . 258

Contents

 

 

xiii

10.3

Room Acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

261

 

10.3.1 Energy Density due to an Acoustic Source . . . . . . . . .

261

 

10.3.2 Sound Pressure Level due to an Acoustic Source . . . .

263

10.4

Transmission Loss due to Acoustical Partitions . . . . . . . . . . . .

264

 

10.4.1

Transmission Coefcient . . . . . . . . . . . . . . . . . . . . . .

264

 

10.4.2

Transmission Loss (TL) . . . . . . . . . . . . . . . . . . . . . .

265

10.5

Noise Reduction due to Acoustical Partitions . . . . . . . . . . . . .

266

 

10.5.1 Energy Density due to a Partition Wall . . . . . . . . . . .

266

 

10.5.2 Sound Pressure Level due to a Partition Wall . . . . . . .

268

 

10.5.3

Noise Reduction (NR) . . . . . . . . . . . . . . . . . . . . . . .

269

10.6

Homework Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

274

11 Power Transmission in Pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . .

277

11.1

Complex Amplitude of Pressure and Acoustic Impedance . . . .

278

 

11.1.1 Denition of Complex Amplitude of Pressure . . . . . .

278

 

11.1.2 Denition of Acoustic Impedance . . . . . . . . . . . . . . .

279

 

11.1.3

Transfer Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . .

281

11.2

Complex Acoustic Impedance . . . . . . . . . . . . . . . . . . . . . . . .

283

11.3

Balancing Pressure and Conservation of Mass . . . . . . . . . . . . .

285

11.4

Transformation of Pressures . . . . . . . . . . . . . . . . . . . . . . . . . .

286

11.5

Transformation of Acoustic Impedance . . . . . . . . . . . . . . . . . .

288

11.6

Power Reection and Transmission . . . . . . . . . . . . . . . . . . . .

297

 

11.6.1 Denition of Power of Acoustic Waves . . . . . . . . . . .

297

 

11.6.2 Power Reection and Transmission Coefcients

 

 

 

of One-to-One Pipes . . . . . . . . . . . . . . . . . . . . . . . . .

297

 

11.6.3 Simplied Cases of Power Reection

 

 

 

and Transmission in One-to-One Pipes . . . . . . . . . . .

298

 

11.6.4 Special Case of Power Reection and Transmission:

 

 

 

One-to-One Pipes . . . . . . . . . . . . . . . . . . . . . . . . . . .

298

11.7

Numerical Method for Molding of Pipelines . . . . . . . . . . . . . .

303

11.8

Computer Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

305

11.9

Project .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

312

11.10

Homework Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

313

12 Filters and Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

317

12.1

Pressure in a One-to-Two Pipe . . . . . . . . . . . . . . . . . . . . . . . .

318

 

12.1.1

Equivalent Acoustic Impedance

 

 

 

of a One-to-Two Pipe . . . . . . . . . . . . . . . . . . . . . . . .

319

12.2

Power Transmission of a One-to-Two Pipe . . . . . . . . . . . . . . .

323

 

12.2.1 Power Reection and Transmission

 

 

 

of a One-to-Two Pipe . . . . . . . . . . . . . . . . . . . . . . . .

323

 

12.2.2 Special Case of Power Reection

 

 

 

and Transmission: A One-to-Two Pipe

 

 

 

with No Returning Waves . . . . . . . . . . . . . . . . . . . . .

324

12.3

Low-Pass Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

329

xiv

 

Contents

12.4

High-Pass Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 335

12.5

Band-Stop Resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 343

12.6Numerical Method for Modeling of Pipelines

with Side Branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 12.7 Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 12.8 Homework Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Appendix 1: Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Appendix 2: Power Spectral Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

Power Spectral Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

Accumulated Sound Pressure Square . . . . . . . . . . . . . . . . . . . . . . . . . 369

Sound Pressure Level in Each Band . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

Chapter 1

Complex Numbers for Harmonic Functions

Sound waves are typically described as simple harmonic motions. Simple harmonic motion can be extended to describe any motion (of the sound wave) by adding a series of simple harmonic motions such as a Fourier series. Simple harmonic motions can be formulated using either trigonometric functions or complex exponential functions. Even though we are more familiar with trigonometric functions such as a cosine or a sine function, the complex exponential functions are commonly used due to their compact and elegant form for derivation and integration in vibration and acoustic analysis.

Since trigonometric functions and complex exponential functions can be used interchangeably in the analysis of vibrations and acoustics, the ability to convert a harmonic function between trigonometric functions and complex exponential functions is essential for the analysis of either vibrations or acoustics. For this reason, conversions between trigonometric functions and complex exponential functions are introduced at the beginning of this course to provide a mathematical tool for analyzing acoustics throughout this course.

This chapter will introduce the four equivalent forms for simple harmonic motions. After you are familiar with the four equivalent forms, you will be able to express any simple harmonic function using either a trigonometric function or a complex exponential function using the four equivalent forms. Furthermore, you will be able to convert any simple harmonic function between the four equivalent forms.

This chapter can be treated as an independent chapter from the rest of the chapters in this book. The materials in this chapter can be used for any vibration-related course to provide students the mathematical skills to handle harmonic functions in vibration analysis.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

1

H. Lin et al., Lecture Notes on Acoustics and Noise Control, https://doi.org/10.1007/978-3-030-88213-6_1