Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
акустика / lin_h_bengisu_t_mourelatos_zp_lecture_notes_on_acoustics_and.pdf
Скачиваний:
84
Добавлен:
04.05.2023
Размер:
12.68 Mб
Скачать

3.5 Conversion Between Traveling and Standing Waves

63

cos ða þ bÞ þ cos ða bÞ ¼ 2 cos ðaÞ cos ðbÞ

Comparing the right-hand sides of the two equations above yields:

 

ð

Þ

 

ð

Þ ¼

 

 

þ

2

 

 

þ

2

 

2 cos

a

 

cos

b

 

2 cos

ωt

 

ϕ þ ϕþ

cos

kx

 

ϕ ϕþ

 

Let:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a ¼ ωt þ ϕ þ ϕþ ; 2

b ¼ kx þ ϕ ϕþ

2

Based on the denition of a and b, the addition and the subtraction of a and b result in:

 

þ

 

¼

 

þ

2

þ

 

þ

2

¼

 

þ

 

þ

 

 

a

 

b

¼

ωt

þ

ϕ þ ϕþ

 

kx

þ

ϕ ϕþ

¼

ωt

 

kx

þ

ϕ

þ

 

 

 

2

 

2

 

 

 

a

 

b

 

ωt

 

ϕ þ ϕþ

 

kx

 

ϕ ϕþ

 

ωt

 

kx

 

ϕ

 

Finally, we can conclude from the trigonometric property that:

cos ða þ bÞ þ cos ða bÞ ¼ 2 cos ðaÞ cos ðbÞ

will give:

!

 

 

 

 

 

 

 

þ

ϕþ þϕ

ð

 

þ

 

þ

 

ϕÞ

ϕ

 

 

cos

 

ωt

 

 

kx

 

ϕ

cos

ωt

 

kx

þ

ϕ

2

 

 

 

¼

 

 

 

 

 

þ

2

 

 

 

 

 

 

 

2 cos

 

ωt

 

 

þ

þ

cos

kx

 

 

 

 

 

þ

Note that it is harder and more complicated to get a and b by equating the lefthand sides of the equations.

3.5Conversion Between Traveling and Standing Waves

In this section, conversions between traveling and standing waves are demonstrated in two examples (Examples 3.4 and 3.5) using mathematical formulations of sound waves.

64 3 Solutions of Acoustic Wave Equation

Traveling waves p (x, t) can be categorized into four basic traveling waves (BTW) expressed in (Form 2 : RIP) as:

pþðx, tÞ ¼ Aþc cos ðωt kxÞ pþðx, tÞ ¼ Aþs sin ðωt kxÞ p ðx, tÞ ¼ A c cos ðωt þ kxÞ p ðx, tÞ ¼ A s sin ðωt þ kxÞ

or:

Four Basic Traveling Waves (BTW) in Form 1

 

Cosine Function

 

Sine Function

 

 

 

 

 

 

 

 

 

Forward Wave

 

 

cos

 

 

sin

 

 

 

 

 

 

 

 

 

Backward Wave

 

 

cos

+

 

 

sin

+

 

 

 

 

 

 

 

 

 

When ωt and kx have different signs, such as (ωt kx), it is a forward traveling wave. When ωt and kx have the same signs, such as (ωt + kx), it is a backward traveling wave.

Because the above four BTWs are independent functions, any traveling wave can be constructed from these four BTWs. Because these four BTWs are simple, yet can fully represent any traveling wave, these four BTWs will be used in acoustic analysis throughout this course.

A standing wave can be constructed with two traveling waves that have the same amplitude and are traveling in the opposite direction.

For example, choose a forward traveling wave p+(x, t) and a backward traveling wave p (x, t) as follows:

pþðx, tÞ ¼ Aþc cos ðωt kxÞ

p ðx, tÞ ¼ A c cos ðωt þ kxÞ

Assume these two traveling waves have the same amplitude as:

Aþc ¼ A c A

It can be shown that the addition of these two traveling waves is a standing wave ps(x, t) as:

3.5 Conversion Between Traveling and Standing Waves

65

psðx, tÞ ¼ pþðx, tÞ þ p ðx, tÞ

¼A cos ðωt kxÞ þ A cos ðωt þ kxÞ

¼A ½ cos ðωtÞ cos ðkxÞ þ sin ðωtÞ sin ðkxÞ& þA ½ cos ðωtÞ cos ðkxÞ sin ðωtÞ sin ðkxÞ&

¼2A cos ðωtÞ cos ðkxÞ

Note that the two traveling waves must have the same amplitude and travel in opposite directions to construct a standing wave.

Example 3.4 The following is a harmonic function p(x, t) of one-dimensional sound pressure in Cartesian coordinates:

hi

pðx, tÞ ¼ Re P cos ðkxÞe jðωtÞ

where P is a real number.

(a)Show that the harmonic function p(x, t) can be constructed by multiplying two trigonometric cosine functions:

pðx, tÞ ¼ P cos ðkxÞ cos ðωtÞ

(b)Show that the harmonic function p(x, t) can be constructed by adding two trigonometric cosine functions:

pðx, tÞ ¼ P2 ½ cos ðωt þ kxÞ þ cos ðωt kxÞ&

Note that each term in the above function has no phase and can be considered as either Form 1 or Form 2.

Example 3.4 Solution

(a) The given harmonic function p(x, t) is:

hi

pðx, tÞ ¼ Re P cos ðkxÞe jðωtÞ

Since both P and cos(kx) are real numbers, we can move these real parts to outside of the Refunction as:

h i pðx, tÞ ¼ P cos ðkxÞ ∙ Re e jðωtÞ

66

3 Solutions of Acoustic Wave Equation

Remove the Refunction by the addition of the corresponding complex conjugate pair and dividing the whole thing by two results in:

pðx, tÞ ¼ P cos ðkxÞ 12 he jðωtÞ þ e jðωtÞi

Change the complex conjugate function pair to a trigonometric cosine function according to Eulers formula:

pðx, tÞ ¼ P cos ðωtÞ cos ðkxÞ

(b)From the above equation, the multiplication of two trigonometric cosine functions can be expressed as the addition of two trigonometric cosine functions (see Sect. 1.8):

pðx, tÞ ¼ P cos ðωtÞ cos ðkxÞ ¼ P2 ½ cos ðωt þ kxÞ þ cos ðωt kxÞ&

Example 3.5 Use the following combination of a forward wave p+(x, t) and a backward wave p (x, t) to answer every question of this problem:

p ðx, tÞ ¼ cos ðωt þ kxÞ; pþðx, tÞ ¼ sin ðωt kx þ πÞ

a)Calculate the standing wave (real number) produced by the forward wave and the backward wave.

b)Find the locations of the peaks and valleys of the standing wave in terms of wavelength. Given k ¼ 2λπ.

Problem 3.5 Solution a) Because:

 

 

2 cos ðaÞ cos ðbÞ ¼ cos ða þ bÞ þ cos ða bÞ

Let:

2

; b ¼ kx þ

 

2

 

a ¼ ωt þ

 

ϕ þϕþ

 

ϕ ϕþ

 

Substituting a and b into the rst equation gives:

3.5 Conversion Between Traveling and Standing Waves

þ

 

67

 

þ

2

 

 

 

2

 

2 cos ωt

 

ϕ þ ϕþ

 

cos

kx

 

ϕ ϕþ

 

¼ cos

ωt kx þ ϕþ þ cos ðωt þ kx þ ϕ Þ

For comparing the given forward and backward waves to the above formula, convert the sine function of the given forward wave p+(x, t) to a cosine function as:

p ðx, tÞ ¼ cos ðωt þ kxÞ

 

 

π

 

 

 

 

 

 

ð

Þ ¼

sin

ðωt

 

kx

þ π

 

 

ωt

þ 3π

 

2

pþ x, t

 

 

πÞ ¼ cos

 

 

kx

 

π

 

¼ cos

ωt kx þ 2 ¼ cos ωt kx þ

 

 

 

 

2

 

Comparing the converted forward and backward waves to the formulas and letting:

 

 

 

 

 

 

 

ϕþ ¼

3π

,

 

 

 

ϕ ¼ 0

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

!

 

ϕ þ ϕþ

¼

3π

 

and

 

ϕ ϕþ

¼

3π

 

 

 

4

 

 

 

 

2

 

 

 

 

 

 

 

2

 

4

 

give:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð

x, t

Þ þ

 

ð

Þ ¼

 

 

 

π

kx

þ

3π

 

 

 

 

 

 

 

 

3π

 

 

 

 

2

 

 

pþ

 

p

x, t

 

cos

ωt

 

 

 

 

þ cos ðωt þ kxÞ

 

 

 

 

 

¼ 2 cos ωt þ

3

 

cos kx

 

 

 

 

 

 

 

 

4

 

4

 

or:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¼ 2 sin ωt þ

π

 

 

 

 

 

π

 

 

 

 

 

 

 

4 sin kx 4

b)The locations of the peaks and valleys in terms of the wavelength are:

Peak at kx ¼ 34π ! 2λπ x ¼ 34π ! x ¼ 38λ

Valley at kx ¼ 74π ! 2λπ x ¼ 74π ! x ¼ 78λ