Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
акустика / lin_h_bengisu_t_mourelatos_zp_lecture_notes_on_acoustics_and.pdf
Скачиваний:
84
Добавлен:
04.05.2023
Размер:
12.68 Mб
Скачать

7.3 2D Boundary Conditions Between Four Walls

177

Mode 2: (l ¼ 2)

λl ¼ 2π ¼ 2L ! λ2 ¼ L kl l 2 2

Mode 3: (l ¼ 3)

λl ¼ 2π ¼ 2L ! λ3 ¼ L kl l 2 3

Note that mode shapes in a pipe are standing waves which are equivalent to two traveling waves with the same amplitude and traveling in opposite directions.

7.32D Boundary Conditions Between Four Walls

7.3.12D Standing Wave Solutions of the Wave Equation

The two-dimensional wave equation in Cartesian coordinate is:

2p ¼ 1 2p c2 t2

!2p þ 2p ¼ 1 2p

x2 y2 c2 t2

178

7 Resonant Cavities

The differential equation is separable if a solution can be cast in the following form that satises the acoustic wave equation:

psðx, y, tÞ ¼ TðtÞXðxÞ YðyÞ

Substituting the above solution into the acoustic wave equation above yields the three separate ordinary differential equations (ODEs):

1

T}ðtÞ

¼

X}ðxÞ

þ

Y}ðyÞ

¼

k2

 

k2

k2

 

c2 TðtÞ

XðxÞ

YðyÞ

x

y

¼

where k is a new variable that relates the spatial and temporal parts of the differential equations. The new variable k is separated into two independent variables kx and ky for two independent differential equations in two independent directions:

1 T}ðtÞ ¼ k2 c2 TðtÞ

X}ðxÞ ¼ k2

XðxÞ x

Y}ðyÞ ¼ k2

YðyÞ y

where the new variable k can be considered a combined wavenumber that related to the wavenumbers kx and ky as:

k2 ¼ k2x þ k2y

With the new variables k, kx, and ky, the solutions of the temporal and the spatial differential equations are:

TðxÞ ¼ At cos ðωt þ θtÞ

XðxÞ ¼ Ax cos ðkxx þ θxÞ

YðxÞ ¼ Ay cos kyy þ θy

Therefore, the standing wave solution of the 2D wave equation is:

psðx, y, tÞ ¼ TðtÞXðxÞYðyÞ

¼ AtAxAy cos ðωt þ θtÞ cos ðkxx þ θxÞ cos kyy þ θy

7.3 2D Boundary Conditions Between Four Walls

179

According to Eulers force equation, the velocity of the 2D standing wave is:

where:

uxðx,

uyðx,

!usðx, y, tÞ ¼

1

 

Z ½ psðx, y, tÞ&dt

 

 

ρo

 

 

 

 

¼

1

 

Z

 

ex

 

þ ey

pðx, y, tÞ dt

 

 

 

 

 

 

 

 

 

 

 

ρo

 

x

y

 

 

 

 

 

ux

 

 

x,

y,

t e

xb

u

y

x, y, t e

y

 

 

¼

ð

 

 

 

 

b

 

 

 

 

 

 

 

Þb

þ

 

 

ð

Þb

 

1

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y, tÞ ¼

 

 

x

AtAxAy sin ðωt þ θtÞ sin ðkxx þ θxÞ cos kyy þ θy

ρ0c

k

 

1

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y, tÞ ¼

 

 

y

AtAxAy sin ðωt þ θtÞ cos ðkxx þ θxÞ sin kyy þ θy

ρ0c

 

k

Note that the pressure is a scaler, and the velocity is a vector as indicated in the equation above.

The detailed derivation of the 2D standing wave velocity above is shown in Appendix 7.7.1.

7.3.22D Nature Frequencies Between Four Walls

Assume these two walls are oriented parallel to each other with the surface normal to the x-axis (y-axis). Also, assume the left (bottom) wall is located at x ¼ 0 (y ¼ 0) and the right (top) wall is located at ¼Lx (y ¼ Ly) as shown below:

= 0

= 0

 

 

= 0

̂

= 0

180

7 Resonant Cavities

The general 2D standing wave pressure and velocity are shown below:

psðx, y, tÞ ¼ AtAxAy cos ðωt þ θtÞ cos ðkxx þ θxÞ cos kyy þ θy

!

usðx, y, tÞ ¼ uxðx, y, tÞbex þ uyðx, y, tÞbey

where:

uxðx, y, tÞ ¼ ρ1 kx AtAxAy sin ðωt þ θtÞ sin ðkxx þ θxÞ cos kyy þ θy 0c k

uyðx, y, tÞ ¼ ρ1 ky AtAxAy sin ðωt þ θtÞ cos ðkxx þ θxÞ sin kyy þ θy 0c k

The boundary condition at the left wall (CLOSED at x = 0):

uxðx, y, tÞjx¼0 ! θx ¼ 0

The boundary condition at the right wall (CLOSED at x = Lx):

uxðx, y, tÞjx¼Lx ¼ sin ðkxlLxÞ ¼ 0, kxl ¼

π

l,

l ¼ 1, 2, . . .

 

 

 

Lx

 

 

 

The boundary condition at the bottom wall (CLOSED at y = 0):

 

 

 

 

 

uyðx, y, tÞ y¼0 ! θy ¼ 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The boundary condition at the top wall (CLOSED at y = Ly):

 

uyðx, y, tÞ y¼Ly

 

¼ sin kymLy ¼ 0,

 

 

 

π

 

 

 

 

m ¼ 1, 2, . . .

 

kym ¼ Ly m,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, the discretized ow velocity becomes:

 

 

 

 

 

 

 

 

 

!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

usðx, y, tÞ ¼ uxðx, y, tÞex þ uyðx, y, tÞey

 

 

 

 

 

 

 

 

 

 

 

uxðx, y, tÞ ¼

 

1

 

kx

A

A A sin

ð

ωt

θ

 

sin

ð

k

 

x

Þ

cos

k

 

y

 

ρ0c k

 

 

 

 

t

bx y

 

þb tÞ

 

 

xl

 

 

 

ym

 

 

1

 

k

 

 

 

 

 

þ θtÞ cos ðkxlxÞ sin kymy

uyðx, y, tÞ ¼

 

 

 

 

y

AtAxAy sin

ðωt

 

ρ0c

k

where:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kxl ¼

 

l;

 

kym ¼

 

m;

 

 

l, m ¼ 1, 2, . . .

 

 

Lx

 

Ly

 

 

 

 

And the discretized sound pressure becomes: