Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие 3000527.doc
Скачиваний:
21
Добавлен:
30.04.2022
Размер:
11.68 Mб
Скачать

11.5. Определение допускаемых напряжений

Для определения допускаемых напряжений используется табличный и расчетный методы. При табличном методе для определенных материалов и группы деталей со сходными условиями работы опытным путем составляют таблицы допускаемых напряжений. В расчетном методе допускаемые нормальные и касательные напряжения определяются по формулам

, , (11.19)

где , -предельные напряжения, значения которых зависит от материала и вида напряженного состояния; - масштабный коэффициент; , - коэффициенты концентрации напряжений, - технологический коэффициент; , - запасы прочности по нормальным и касательным напряжениям. В качестве предельных напряжений , принимают одну из механических характеристик материала. В случае статического действия нагрузок для пластичных материалов (сталь, ряд сплавов) выбирают предел текучести , , а для хрупких материалов – предел прочности , . При действии переменных напряжений выбирают предел выносливости , или , . Поскольку значения механических характеристик зависят от вида деформации, то при деформации изгиба принимают , а при кручении , где - предел текучести при растяжении. При переменных напряжениях эти значения были рассмотрены ранее. Введение масштабного коэффициента обусловлено тем, что в сечении крупных образцов увеличивается вероятность неоднородности структуры материала из-за различных включений, трещин, газовых пузырей, снижающих прочность. Масштабный коэффициент равен

, (11.20)

где -предел выносливости заданного диаметра D (например, D=75 мм), - предел выносливости малого диаметра (D=7 мм). Для деталей с небольшими размерами мм можно принимать =0.9 – 1.0. Технологический коэффициент , учитывает влияние качества механической обработки деталей на их прочность. Для шлифованных поверхностей принимают =1.0-1.05, для грубо обработанных =1.5- 1.8. Запасы прочности определяются как произведение сомножителей , где - сомножитель, учитывающий неточности в выборе расчетной схемы нагрузок, равный =1.1-1.5, другой сомножительm - поправка на отклонения принимаемых в расчете на прочность механических характеристик материалов от действительных =1.1 - 1.2; -сомножитель , учитывающий степень ответственности детали и ее влияние на надежность, =1.0 – 3.0. В общем случае запасы прочности могут составлять =1.1 - 5.0.

Контрольные вопросы

  1. Что называют потерей устойчивости для тонкого деформируемого в продольном направлении стержня?

  2. Запишите дифференциальное уравнение изогнутой оси стержня и его решение.

  3. Чему равен прогиб тонкого стержня при продольной деформации?

  4. Запишите формулу Эйлера для определения критической силы?

  5. Как определяется напряжение сжатия при критической

нагрузке тонкого деформируемого в продольном направлении стержня?

  1. Как производится проверка сжатых стержней на устой-

чивость?

  1. От чего зависит предельное значение гибкости стержня?

  2. Какие параметры имеют отнулевой и симметричный циклы?

  3. От чего зависит предел выносливости одного материала?

  4. Как влияет концентрация напряжений на прочность деталей?

  5. Чему равен предел выносливости для среднеуглеродистой стали при отнулевом и симметричном циклах при растяжении, изгибе и кручении?

  6. Как определяются значения допускаемых нормальных и касательных напряжений?

12. ПРОЕКТИРОВАНИЕ МЕХАНИЗМОВ. РАСЧЕТ ГЕОМЕТРИИ ПЕРЕДАЧ И ИХ ДЕТАЛЕЙ

12.1. Фрикционные передачи

Фрикционные передачи роликами осуществляют передачу движения между параллельными и пересекающимися валами. Сила трения возникает на образующей роликов (рис. 12.1.а) или на их торцовых поверхностях (рис. 12.1. б). Сила нормального давления Fn/2 создается силами упругости составляющих дисков 1 и 2. Размеры передачи зависят от диаметров роликов и , межосевого расстояния, равного а w= 0.5 ((Д1 + Д2). Задаваясь диаметром , определяют , где - передаточное число. При геометрическом расчете диаметров дисков 1 и 2 фрикционных механизмов с гибкой связью 3 (рис. 12.1 в) значения (мм) для передач с резинотканевыми ремнями выбирается в соответствии с выражением /1/:

, (12.1)

где - вращающий момент на валу малого шкива (Н м.).

Для синтетических ремней эта зависимость дает завышенные результаты. По этому при расчете рекомендуется предварительно выбрать толщину ремня =0,5 мм или =0,7 мм и диаметр определить из соотношения Д1 / =60 - 150. Наименьший размер шкива в таких механизмах РЭС составляет Д1min = 6 – 8 мм. В качестве гибкой связи используют шнуры из шелка, капрона, резины, пластмасс, стальные тросики, ленту, а также плоский, круглый и клиновый ремни.

Рис. 12.1. Схемы фрикционных передач

Минимальное значение расчетного диаметра меньшего шкива (мм) клиноременных передач определяется из выражения:

Д1 ≈ 30∙(T1)1/3, (12.2)

где - крутящий момент на ведущем валу (н.м.).

Диаметр большего шкива равен , а вычисленные значения округляют до ближайших стандартных значений: 30; 45; 50; 56; 63; 71; 80; 90; 100; 112; 125; 140; 160; 180; 200 и т.д. Межосевое расстояние аw определяется конструктивными требованиями к ременному приводу и для плоскоременных передач:

аw (1.5 – 2.0)1+ Д1 ) . (12.3)

Коэффициент 1.5 принимают для передач с синтетическими ремнями и 2.0 – для передач с резинотканевыми ремнями.

Для клиноременных передач: аw равно

аwmin = 0.551+ Д2 ) + h (12.4)

аwmax =21+ Д2 ) (12.5)

Обычно для увеличения долговечности ремня принимают аw аwmin и руководствуются следующей зависимостью:

аw = СД2 (12:6)

где C – числовой коэффициент равный 1.5 для передаточного числа U=1, C=1.2; для U=2, C=1.0, если U=3, C=0.95; для U=4, C=0.9, если U=5 и C=0.35; для U>6.

Расчетная длина ремня Lр стального тросика, ленты, шнура в зависимости от выбранного аw определяется выражением /3/:

Lр = 2 аw + 0.5 ( Д1 + Д2) + 0.25( Д1 - Д2) 2/ аw (12.7)

Угол охвата ведущего шкива 1 равен:

1 = (180 0 – 570)( Д2 – Д1) 2/ аw (12.8)

Значение угла зависит от тяговой способности и составляет для передач с резинотканевыми и синтетическими ремнями 1 1500 и клиноременных 1 1200. По этому габариты клиноременных передач существенно меньше.

Достоинством передачи с гибкой связью, в качестве которой используется зубчатый ремень, является отсутствие скольжения. Зубчатый ремень (рис. 12.2) на внутренней поверхности имеет выступы или зубцы, расположенные с шагом Рp; зубцы входят в соответствующие впадины на шкивах. Ремень состоит из жесткой кольцевой основы в виде тросиков 2 и резиновой массы 1.

Согласно отраслевой нормали ОН-6-07-5-83, ремень характеризуется модулем m = Рр, общей толщиной Н, высотой зуба h, шириной В, углом 2γ=50° и толщиной S зуба. Стальные тросики диаметром d = 0.3 ÷ 0,75 мм размещают с шагом 1 ÷ 1,2 мм на расстоянии Δ от основания ремня. Число зубьев ремня берется равным 32, 36, 40, 45, 50, 56, 64, 71, 80, 90, 100, 112, 125, 140, 160.

Рекомендуемые значения модуля m: в зависимости от передаваемой мощности Р имеют вид: для P ≤ 0,4 кВт, m = 2 мм или m = 3 мм, для 0,4 ≤ Р ≤ 3,0 кВт, m = 3 мм или m = 4 мм; для Р > 3 кВт, значения m = 4 мм или m = 5 мм.

При расчете размеров зубчатого шкива определяют диаметр начальной окружности Д0, соответствующий положению стальных тросиков в зубчатом ремне, когда ремень находится на шкиве.

Д0 =m·z. (12.9)

Минимальное число зубьев на шкиве zmin зависит от модуля

ремня: при m = 2 - 4 мм, zmin = 16, при m = 5 мм zmin= 18.

Рис. 12.2. Основные размеры зубчатого ремня (а) и шкива (б)

Наружный и внутренний диаметры, а также шаг впадин шкива Pш = Рр (рис. 12.2 б) находят из выражений

Дн = Д0 - 2∆, (12.10)

Двн = Дн - 2·(h), (12.11)

Рш = (π·Дн ) /z= Рр-2πΔ /z, (12.12)

, (12.13)

где δ – угловой шаг впадин шкива. Радиус округлений зубьев у головки и ножки шкива R = 0,25·m. Ширину основания впадины у шкива Sш рассчитывают с учетом бокового f = 0,35·m и радиального е ≥ 3·m зазоров, при этом S’ = S - 2·е tgγ +f / cosγ.

Передачи с гибкой связью с зацеплением выполняются также и с перфорированной лентой. В таких передачах зубчатые барабаны 1 соединены гибкой 2 перфорированной лентой (рис. 12. 3), которую изготавливают чаще всего из стали. Минимальный радиус r барабана связан с толщиной δ стальной ленты зависимостью r = 120·δ. Передача с перфорированной лентой широко применяется в принтерах персональных компьютеров. Передаточное отношение для зубоременных передач и передач с перфорированной лентой определяется как , где под Д1 и Д2 – понимают диаметры начальных окружностей.

Рис. 12.3. Передача с перфорированной лентой (а) и лобовой вариатор (б)

При последовательном соединении n-фрикционных механизмов передаточное отношение i1n равно произведению передаточных отношений отдельных механизмов.

i1n= i12 i43i65in-1,n . (12.14)

Если при последовательном соединении фрикционных механизмов диаметры дисков равны D1, D2, Dn, то передаточное отношение i1n определяется выражением

i1n = ξnD2/D1D4/D3Dn/Dn-1 . (12.15)

Для лобового вариатора (рис. 12.3, б), при перемещении ролика 2, меняется передаточное отношение i12. Один из его основных параметров диапазон регулирования.

Д = =D2max/D2min, (12.16)

Диапазон регулирования лобового вариатора может изменяться в широких пределах. Следует учитывать, что фрикционные механизмы с гибкой связью применяются для передачи вращения между валом при больших межосевых расстояниях и для преобразования вращательного движения в прямолинейное, и наоборот. Для передачи вращения (рис. 12.1, в) фрикционные механизмы имеют передаточное число 7÷10, обладают плавным ходом, демпфируют и сглаживают колебания крутящего момента, имеют низкую стоимость, не нуждаются в смазке и работают в широком температурном интервале от – 40 до + 80 °С. Эти особенности обусловливают широкое применение ременных передач в системах автоматики , в персональных компьютерах, приводах магнитофонов и видеомагнитофонов. Кроме ременной передачи различают механизмы с непосредственными соединениями, когда гибкая связь 3 закреплена каким - либо способом на барабанах или шкивах; (рис. 12.4). Для фрикционных передач с непосредственными соединениями в качестве гибких связей применяются гибкие стальные тросики, диаметром d = 0,6 - 1,02 мм; капроновые d = 0,3 - 0,8 мм и специальные для радиоприемников d = 0,8 - 1,3 мм или гибкие стальные ленты, для которых применяются высокоуглеродистые и пружинные стали толщиной 0,1; 0,12; 0,15; 0,18; 0,2; 0,22; 0,25; 0,28; 0,3 мм и шириной 4 - 30 мм. Предел прочности при растяжении таких лент 735 - 1175 МПа.

На рис. 12. 4 приведены схемы передач гибкой связью с непосредственными соединениями. Для передачи преобразующей линейное перемещение гибкой связи 3 во вращательное движение ролика 1 (рис. 12.4, а). уравнение движения имеет вид

φ1 = 180 / π(2l /Д + h) , (12.17)

где φ1 – угол поворота ролика;

l – поступательное перемещение гибкой связи,

Д – диаметр ролика;

h – толщина или диаметр тросика.

Для передачи (рис. 12.4, в) уравнение движения задается формулой

φ2 = φ11 + h) / (Д2 + h). (12.18)

Передачи с гибкой связью могут работать как на ускорение, так и на замедление с i12 до 3:1 или 1:3. Необходимым условием работы передачи с гибкой связью является силовое или кинематическое замыкание. Силовое замыкание передач с одной ветвью чаще всего осуществляется с помощью пружин связанных с ведомым звеном.

В кинематических замкнутых передачах натяжение гибкой связи производится пружиной (рис. 12.4 а, в, г), а шкивы и ролики для передач с гибкими тросиками выполняются с одной круговой или несколькими спиральными канавками. Профиль канавки шкива для увеличения трения обычно делают клиновидным (рис. 12.4, а).

Рис. 12.4. Схемы механизмов с гибкой связью

Ролики для передач с гибкой лентой выполняют в прямоугольной канавке (рис. 12.4 б). Иногда вместо двух дисков в фрикционной передаче используют три диска (рис. 12.4, г), повышая точность настройки. Такие виды передач получили широкое применение в конструкциях современных аналогово-цифровых приемников в качестве настройки на заданную частоту радиостанции, для выбора заданной длины волны приемника РЭС или радиолокационной станции.

12.2. Геометрия цилиндрической зубчатой передачи

В механизмах РЭС наиболее распространены эвольвентные зубчатые передачи /1-3/.

Меньшее зубчатое колесо ( ) называют шестерней, а большое ( ) – колесом. Зацепление зубчатых колес и кинематически можно представить как качение без скольжения двух окружностей диаметрами и называемых начальными, для передач без смещения они совпадают с делительными и (рис. 12.5).

Положение линии зацепления, т.е. траектории общей точки контакта зубьев при ее движении относительно неподвижного звена зубчатой передачи, определяется углом зацепления (ГОСТ 16530-70). Окружность зубчатого колеса, делящуюся при его нарезании на равное число частей длинной P, называемых шагами и имеющую стандартный модуль, называют делительной. Диаметр такой окружности находят из равенства

, (12.19)

где m - модуль зубчатого зацепления.

Модуль m является основной характеристикой

зубчатого колеса и равен

. (12.20)

Зубчатые колеса с модулем 0.1 мм 1мм называют мелкомодульными.

Для снижения номенклатуры и унификации режущего и измерительного инструментов модули стандартизированы и выбираются из табл. 12.1. Первый ряд следует предпочитать второму.

У передачи, которая состоит из зубчатых колес и изготовленных без смещения, начальные и делительные окружности совпадают:

, (12.21)

. (12.22)

Таблица 12.1

Значения модулей

Ряд

m, мм

Первый

0.1; 0.12; 0.15; 0.2; 0.25; 0.3; 0.4; 0.5; 0.6; 0.8; 1.0; 1.25; 1.5; 2.0; 2.5; 3.0; 4.0; 5.0

и т.д.

Второй

0.14; 0.18; 0.22; 0.28; 0.35; 0.45; 0.55; 0.7; 0.9; 1.125; 1.375; 1.75; 2.25; 2.75; 3.5; 4.5; 5.5; 5 и т.д.

Высота зуба берется равной . При , , где - коэффициент высоты головки, - коэффициент радиального зазора (по ГОСТ 16532-70, значения

и ). Диаметры вершин зубьев равны:

, (12.23)

, (12.24)

диаметры впадин: определяются выражениями

, (12.25)

. (12.26)

Межосевое расстояние зубчатой пары: равно

. (12.27)

Исходный контур инструментальной рейки, используемый при нарезании зубчатых колес имеет угол профиля w = 200. Ширина венца зубчатого колеса определяется произведением межосевого расстояния на соответствующий коэффициент ширины зубчатого венца :

.

Рис. 12.5. Схема зацепления двух зубчатых колес

Выбор осуществляется из табл. 12.2. При увеличении коэффициента ширины зубчатого венца для обеспечения контакта по всей длине зуба необходимо повышать жесткость и точность изготовления зубчатых колес.

Таблица 12.2

Значения

Применение

0.01 0.1

Кинематические и легконагруженные передачи

0.1 0.25

Легко и средненагруженные передачи при повышенной жесткости валов

0.25 0.40

Передачи повышенной и высокой нагруженности при достаточной жесткости валов

Часто для мелкомодульных колес выбирают 0.01-0.1.

12.3. Геометрия червячной передачи

Червячные передачи работают по принципу работы винтовой пары. Как правило, ведущим звеном является червяк, а ведомым – колесо. В червячной передаче с архимедовым червяком различают начальные диаметры и ; делительные диаметры червяка 1 и колеса 2 и и шаг P связанный с модулем зацепления в основном сечении червяка m соотношением (рис. 12.6). Резьба червяка может быть однозаходной и многозаходной, число витков червяка равно , число зубьев колеса - . Модули предпочтительного ряда в осевом сечении червяка должны выбираться из ряда:0.1; 0.125; 0.16; 0.2; 0.25; 0.315; 0.4; 0.5; 0.63; 0.8; 1.0; 1.25; 1.6; 2.0; 2.5; 3.15; 4.0; 5.0 и т.д.; допускается использование модулей 0.12; 0.15; 0.3; 0.6; 1.5; 3.0; 3.5; 4.5; 5.5 и т.д. Рекомендуются следующие коэффициенты диаметра червяка (ряд 1): 6.3; 8.0; 10; 12.5; 16; 20; 25. Некоторые сочетания и по ГОСТ 2144-76 даны в табл. 12.3. Делительный (начальный) диаметр , диаметры вершин и впадин витков имеют

при ; , при =0.2 выражение в виде:

, (12. 28)

, (12. 29)

. (12. 30)

Длина нарезанной части червяка:

при

при .

Угол обхвата витков червяка колесом , угол зацепления .

Рис. 12.6. Геометрические параметры червячной передач

При этом для колеса имеем

, (12. 31)

, (12. 32)

, (12. 33)

.

При , ; при , ; при , .

Ширину венца находят в соответствии с углом обхвата червяка колесом . Делительный угол подъема винтовой линии вычисляют из выражения:

. (12. 34)

Межосевое расстояние в червячной передаче без смещения

. (12. 35)

Геометрические расчеты червячных передач во многом аналогичны расчетам зубчатых механизмов.