Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭКЗАМЕН ГИСТА.docx
Скачиваний:
4
Добавлен:
08.02.2024
Размер:
27.42 Mб
Скачать

Мышечные ткани

1. Морфофункциональная характеристика и классификация мышечных тканей. Гладкая мышечная ткань: источник развития, строение, иннервация. Структурные основы сокращения гладких мышечных клеток. Регенерация.

Это группа тканей имеющая различное строение и функции, но объединенная по функциональному признаку-сократимости.

Функции мышечной ткани

  • Специализированы для сокращения в организме (основная функция)

  • Приводят в движение рычаги скелета

  • Обеспечивают ритмичную деятельность миокарда и гемоциркуляцию в сосудах

  • Участвуют в перистальтике, функционировании сфинктеров

  • Поддерживают нормальный тонус сосудов и полых внутренних органов

Морфологическая классификация (по функциям и строению)

  • Гладкая (неисчерченная)

  • Поперечно-полосатая:

  • Скелетная

  • Сердечная

Гистогенетическая классификация

  • Соматического типа- миотом

  • Целомического типа- миоэпикардиальная пластинка

  • Мезенхимного происхождения- стенки сосудов и внутренних органов

  • Эпидермального происхождения- миоэпителиальные клетки желез (потовых, половых, сальных, молочных)

  • Нейрального происхождения- мышцы расширяющая и суживающая зрачок

Общая морфофункциональная характеристика МТ

  • Структурные элементы (клетки и волокна), имеют удлиненную форму

  • Сократительные структуры (миофибриллы и миофиламенты) располагаются продольно и создают эффект продольной исчерченности

  • Присутствует кислород-связывающий железосодержащий белок миоглобин (участвует в процессах окислительного фосфолирирования)

  • Хорошо развиты структуры, осуществляющие накопление и выделение Ca2+

  • В процессе сокращения происходит скольжение толстых и тонких миофиламентов относительно друг друга, путем попеременного замыкания и размыкания мостиков между ними (происходит изменение длины)

  • Содержат много митохондрий

  • Имеют запасы углеводов в виде гранул гликогена и запасы жиров в виде липидных капель

  • АТФ- источник энергии при сокращении миофибрилл

Происхождение гладкой мышечной ткани

ГМТ сосудов и внутренних органов- мезенхима

ГМТ нейрального происхождения (радужка глаза)- клетки нейрального зачатка

Миоэпителиальные клетки экзокриных желез- эктодерма

Структурно-функциональной единицей гладкой мышечной ткани внутренних органов и сосудов является миоцит. Представляет собой чаще всего веретенообразную клетку (длиной 20—500 мкм, диаметром 5—8 мкм), покрытую снаружи базальной пластинкой, но встречаются и отростчатые миоциты. В центре располагается вытянутое ядро, по полюсам которого локализуются общие органеллы: зернистая эндоплазматическая сеть, пластинчатый комплекс, митохондрии, цитоцентр. В цитоплазме содержатся толстые (17 нм) миозиновые и тонкие (7 нм) актиновые миофиламенты, которые располагаются в основном параллельно друг другу вдоль оси миоцита и не образуют А и I диски, чем и объясняется отсутствие поперечной исчерченности миоцитов. В цитоплазме миоцитов и на внутренней поверхности плазмолеммы встречаются многочисленные плотные тельца, к которым прикрепляются актиновые, миозиновые, а также промежуточные филаменты. Плазмолемма образует небольшие углубления — кавеолы, которые рассматриваются как аналоги Т-канальцев. Под плазмолеммой локализуются многочисленные везикулы, которые вместе с тонкими канальцами цитоплазмы являются элементами саркоплазматической сети.

Сигнал к сокращению обычно поступает по нервным волокнам. Медиатор, который выделяется из их терминалей, изменяет состояние плазмолеммы. Она образует выпячивания- кавеолы, в которых концентрируются ионы кальция. Кавеолы отшнуровываются в сторону цитоплазмы в виде пузырьков. Это влечет за собой взаимодействие миозина с актином. Актиновые филаменты смещаются друг другу навстречу, плотные пятна сближаются, усилие передается на плазмолемму, и вся клетка укорачивается. Когда поступление сигналов со стороны нервной системы прекращается, ионы кальция эвакуируются из кавеол, миозин деполимеризуется и « миофибриллы» распадаются. Сокращение прекращается. Гладкая МТ иннервируется вегетативной нервной системой, т.е. не подчиняется воле человека. Сокращение ГМТ медленное - тоническое, зато ГМТ малоутомляема.

Регенерация ГМТ:

1. Митоз миоцитов после дедифференцировки: миоциты утрачивают сократительные белки, исчезают митохондрии и превращаются в миобласты. Миобласты начинают размножаться, а потом вновь дифференцируются в зрелые леомиоциты.

2. Возможно образование новых ГМ-клеток из малодифференцированных стволовых клеток фибробластического дифферона рыхлой с.д. Физиологическая регенерация гладкой мышечной ткани проявляется в условиях повышенных функциональных нагрузок. Наиболее отчетливо это видно в мышечной оболочке матки при беременности. Такая регенерация осуществляется не столько на тканевом, сколько на клеточном уровне: миоциты растут, в цитоплазме активизируются синтетические процессы, количество миофиламентов увеличивается. Не исключена, однако, и пролиферация клеток

2. Морфофункциональная характеристика и классификация мышечных тканей. Поперечнополосатая скелетная мышечная ткань: источник развития, строение, иннервация. Структурные основы сокращения мышечного волокна. Типы мышечных волокон. Регенерация.

Скелетная мышечная ткань

+

Источником развития элементов скелетной (соматической) поперечнополосатой мышечной ткани являются клетки миотомов — миобласты.

Строение

Основной структурной единицей скелетной мышечной ткани является мышечное волокно, состоящее из миосимпласта и миосателлитоцитов, покрытых общей базальной мембраной.

Длина всего волокна может измеряться сантиметрами при толщине всего 50—100 мкм. Комплекс, состоящий из плазмолеммы миосимпласта и базальной мембраны, называют сарколеммой.

Миосимпласт имеет множество продолговатых ядер, расположенных непосредственно под сарколеммой. Их количество в одном симпласте может достигать нескольких десятков тысяч. Миофибриллы заполняют основную часть миосимпласта и расположены продольно.

Саркомер (миомер) является структурно-функциональной единицей миофибриллы и представляет собой ее участок, расположенный между двумя телофрагмами (линиями Z). Он включает анизотропный диск и две половины изотропных дисков(анизотропные A-диски и изотропные I-диски). - по одной половине с каждой стороны. Саркомер образован упорядоченной системой толстых (миозиновых) и тонких (актиновьх) миофиламентов. Толстые миофиламенты связаны с мезофрагмой (линией М) и сосредоточены в анизотропном диске,

а тонкие миофиламенты прикреплены к телофрагмам (линиям Z), образуют изотропные диски и частично проникают в анизотропный диск между толстыми нитями вплоть до светлой полосы Н в центре анизотропного диска.

Механизм мышечного сокращения описывается теорией скользящих нитей, согласно которой укорочение каждого саркомера (а, следовательно, миофибрилл и всего мышечного волокна) при сокращении происходит благодаря тому, что в результате взаимодействия актина и миозина в присутствии кальция и АТФ тонкие нити вдвигаются в промежутки между толстыми без изменения их длины. При этом ширина анизотропных дисков не меняется, а ширина изотропных дисков и полос Н - уменьшается. Строгая пространственная упорядоченность взаимодействия множества толстых и тонких миофиламентов в саркомере определяется наличием сложно организованного поддерживающего аппарата, к которому, в частности, относятся телофрагма и мезофрагма. Кальций выделяется из саркоплазматической сети, элементы которой оплетают каждую миофибриллу, после поступления сигнала с сарколеммы по Т-трубочкам (совокупность этих элементов описывается как саркотубулярная система).

Миосателлитоциты - это малодифференцированные клетки, являющиеся источником регенерации мышечной ткани. Они прилежат к поверхности миосимпласта, так что их плазмолеммы соприкасаются. Миосателлитоциты одноядерны, их ядра овальной формы и мельче, чем в симпластах. Они обладают всеми органеллами общего значения (в том числе и клеточным центром).

Скелетная мышечная ткань

  • Образует скелетные мышцы

  • Составляет 20-25% от общей массы тела

  • Иннервируется ЦНС

  • Основной элемент- мышечные волокна (миосимпласт и миосателиоциты), которые окружены базальной мембраной

  • Диаметр 50-70 мкм

  • Ядра по периферии, под плазмолеммой

  • Поперечная исчерченность- чередование светлых и темных полосок

типы мышечных волокон в скелетной мышце - разновидности мышечных волокон с определенными структурными, биохимическими и функцио нальными различиями. Типирование мышечных волокон производится на препаратах при постановке гистохимических реакций выявления ферментов - например, АТФазы, лактатдегидрогеназы (ЛДГ), сукцинатдегидрогеназы (СДГ) (рис. 91) и др. В обобщенном виде можно условно выделить три основных типа мышечных волокон, между которыми существуют переходные варианты.

Тип I (красные) - медленные, тонические, устойчивые к утомлению, с небольшой силой сокращения, окислительные. Характеризуются малым диаметром, относительно тонкими миофибриллами,

высокой активностью окислительных ферментов (например, СДГ), низкой активностью гликолитических ферментов и миозиновой АТФазы, преобладанием аэробных процессов, высоким содержанием пигмента миоглобина (определяющим их красный цвет), крупных митохондрий и липидных включений, богатым кровоснабжением. Численно преобладают в мышцах, выполняющих длительные тонические нагрузки.

Тип IIВ (белые) - быстрые, тетанические, легко утомляющиеся, с большой силой сокращения, гликолитические. Характеризуются большим диаметром, крупными и сильными миофибриллами, высокой активностью гликолитических ферментов (например, ЛДГ) и АТФазы, низкой активностью окислительных ферментов, преобладанием анаэробных процессов, относительно низким содержанием мелких митохондрий, липидов и миоглобина (определяющим их светлый цвет), значительным количеством гликогена, сравнительно слабым кровоснабжением. Преобладают в мышцах, выполняющих быстрые движения, например, мышцах конечностей.

Тип IIА (промежуточные) - быстрые, устойчивые к утомлению, с большой силой, оксилительно-гликолитические. На препаратах напоминают волокна типа I. В равной степени способны использовать энергию, получаемую путем окислительных и гликолитических реакций. По своим морфологическим и функциональным характеристикам занимают положение, промежуточное между волокнами типа I и IIB.