Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Osnovy_kvantovykh_i_optoelektronnykh_priborov.doc
Скачиваний:
179
Добавлен:
26.09.2019
Размер:
5.26 Mб
Скачать

3.5Со2-лазер

Молекулярные СО2–лазеры являются среди газовых лазеров самыми мощными непрерывными лазерами, вследствие наибольшего КПД преобразования электрической энергии в энергию излучения (15-20 %). Лазерная генерация происходит на колебательно-вращательных переходах и линии излучения этих лазеров находятся в дальней ИК-области, которые расположены на длинах волн 9,4 мкм и 10,4 мкм.

В СО2–лазере используется смесь газов СО2, N2 и He. Накачка осуществляется непосредственно при столкновениях молекул СО2 с электронами и колебательно возбужденными молекулами N2. Высокая теплопроводность He в смеси способствует охлаждению СО2, что приводит к обеднению нижнего лазерного уровня, заселяемого в результате теплового возбуждения. Таким образом, присутствие N2 в смеси способствует высокой заселенности верхнего лазерного уровня, а присутствие He – обеднению нижнего уровня, а в итоге совместно они приводят к повышению инверсии населенностей. Диаграмма энергетических уровней СО2 –лазера показана на рис. 3.4. Лазерная генерация осуществляется при переходе между колебательными состояниями молекулы СО2 31 или 32 с изменением вращательного состояния.

Р ис. 3.4. Диаграмма энергетических уровней N2 и СО2 в СО2 –лазере.

СО2–лазер может работать как в непрерывном, так и в импульсных режимах. В непрерывном режиме его выходная мощность может достигать нескольких киловатт.

4Полупроводниковые лазеры

К полупроводниковым лазерам относятся лазеры, в которых используются оптические переходы с участием свободных носителей тока в кристаллах, т.е. с участием межзонных электронных переходов в полупроводнике. Следовательно, в этом случае рассматриваются переходы между двумя распределенными энергетическими уровнями, а не между отдельными уровнями, как было в атомарных и молекулярных системах.

4.1Физические основы работы полупроводникового лазера

Ф изической основой работы полупроводниковых лазеров является межзонная излучательная рекомбинация в p-n-переходе полупроводникового диода. При выполнении определённых условий создаётся инверсное распределение носителей в p-n-переходе, что приводит к вынужденному излучению.

Рис.4.1. Кривые зависимости разрешенных значений энергии E от импульса для прямозонного полупроводника: а) при T= 00K, б) при T00K (заштрихованные области соответствуют полностью заполненным состояниям.).

4.1.1Энергетические состояния в полупроводниках

Зависимости энергии Е электронных состояний от импульса для прямозонного полупроводника в рамках приближения параболической зоны показаны на рис.4.1. Нижняя зона, полностью заполненная при температуре T= 00K, отделяется от верхней, свободной зоны сравнительно неширокой запрещенной зоной, ширина которой Еg обычно составляют в полупроводнике величину от долей до нескольких единиц электрон-вольт. С повышением температуры часть электронов за счет теплового возбуждения переходит в зону проводимости (рис.4.1.б). При приложении электрического поля к образцу через полупроводник протекает электрический ток, то есть полупроводник становится электропроводным. Такие полупроводники называются собственными.

В примесных полупроводниках, кроме указанных зон, имеются еще сравнительно узкие уровни, расположенные в пределах запрещенной зоны и принадлежащие атомам примесей. Если такой дополнительный уровень располагается ближе к зоне проводимости, то он может легко отдавать ей электроны. Примесь в этом случае называется донорной, а полупроводник - полупроводником n-типа электро­проводности. Если уровень примеси располагается ближе к валентной зоне, на него легко может перейти электрон из валентной зоны, где при этом образуется вакансия (дырка). Такая примесь называется акцепторной, а полупроводник соответственно - полупроводником p-типа электропроводимости.

Рассмотрим вопрос о заполнении электронами энергетических состояний в полупроводнике. Вероятность заполнения f(E) данного состояния с энергией E в полупроводнике дается статистикой Ферми-Дирака.

Для собственного полупроводника концентрация электронов в зоне проводимости (или дырок в валентной зоне) в интервале энергий dE дается выражением: , (4.1)

где gn(E) - функция плотности состоянии, fn(E) - функция Ферми - Дирака для электронов, определяющая вероятность заполнения данного состояния. Функция Ферми- Дирака имеет вид: , (4.2)

где EF - энергия уровня Ферми. На рис.4.2. представлен график функции f(E). Как видно из рисунка при T=00K уровень Ферми EF представляет собой границу между полностью заполненными и пустыми уровнями. При T 00K уровень EF соответствует уровню энергии, вероятность заполнения которого равна 0,5.

Рис.4.2. Распределение Ферми (EF  уровень Ферми).

В примесных полупроводниках положение уровня EF зависит как от концентрации электронов, так и от характера примеси. Поскольку в полупроводнике n-типа в зоне проводимости возрастает концентрация электронов, это приводит к возрастанию энергии Ферми EF и смещению его вверх к зоне проводимости. При больших концентрациях донорной примеси (1017-1019см-3) смещение вверх происходит на такую величину, что уровень Ферми оказывается в зоне проводимости. В полупроводниках p-типа при больших концентрациях примеси уровень Ферми попадает в валентную зону. В первом случае полупроводник называется вырожденным по электронам, а во втором - вырожденным по дыркам.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]