Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
пособие ФХОКП.doc
Скачиваний:
400
Добавлен:
07.06.2015
Размер:
832 Кб
Скачать

2.6. Твердые вещества

При охлаждении жидкости происходит дальнейшее снижение кинетической энергии частиц. При некоторой температуре или интервале температур жидкость переходит в твердое состояние, в котором частицы практически утрачивают поступательное движение и сохраняют в основном колебания около своего положения. В отличие от газов носителями свойств жидкости являются молекулы, носителем свойств твердого тела является фаза. Твердые вещества могут находиться в аморфном или кристаллическом состояниях.

Подавляющее большинство твердых тел (в том числе все без исключения металлы) находятся в кристаллическом состоянии, поэтому характеризуются дальним порядком, т.е. трехмерной периодичностью по всему объему твердого тела. Регулярное расположение частиц в твердом теле изображается в виде решетки , в узлах которой находятся те или иные частицы.

Монокристаллы характеризуются анизотропностью, т.е. зависимостью свойств от направления в пространстве. Однако следует заметить, что реальные твердые вещества (металлы в том числе) поликристаллические, т.е. состоят из множества кристаллов, ориентированных по разным осям координат, поэтому в поликристаллических телах анизотропия не проявляется.

Кристаллические тела плавятся при определенной температуре, называемой температурой плавления. Кристаллы характеризуются энергией постоянной кристаллической решетки и координационным числом (числом частиц, непосредственно примыкающих к данной частице в кристалле). Постоянная решетки характеризует расстояния между центрами частиц, занимающих узлы в кристалле в направлении осей, совпадающих с направлениями основных граней. Энергией кристаллической решетки называют энергию, необходимую для разрушения одного моля кристалла и удаления частиц за пределы их взаимодействия. Основной вклад в энергию вносит энергия химической связи между частицами в решетке, кДж/моль.

Наименьшей структурной единицей кристалла, которая выражает все свойства его симметрии, является элементарная ячейка. При многократном повторении ячейки по трем измерениям получают всю кристаллическую решетку. Для металлов характерны два типа кристаллической решетки – кубическая и гексагональная (рис. 2.2).

Рис. 2.2. Типы элементарных ячеек

кристаллической решетки металлов:

а – гексагональная;б– кубическая;

в– кубическая центрированная

Многие вещества могут существовать в двух и более кристаллических структурах. Такое явление называется полиформизмом. Так, а-железо имеет объемноцентрированную кубическую ячейку, а -железо – гранецентрированную и т.д.

По природе частиц в узлах кристаллической решетки и химических связей между ними все кристаллы можно разделить на молекулярные, атомно-ковалентные, ионные и металлические. Кроме того, существуют кристаллы со смешанными химическими связями.

В молекулярных кристаллах в узлах решеток находятся молекулы, между которыми действуют ван-дер-ваальсовы силы, имеющие высокую энергию и определяющие свойства этих кристаллов. Вещества с молекулами сферической формы имеют структуру плотной упаковки. Кристаллы с полярными молекулами в узлах имеют более высокую прочность и температуру плавления, чем кристаллы с неполярными молекулами. Значительное упрочнение кристаллов обусловливают водородные связи.

В атомно-ковалентных кристаллах в узлах располагаются атомы, образующие друг с другом прочные ковалентные связи. Это обусловливает высокую энергию решетки и соответственно физические свойства веществ. Из-за направленности ковалентных связей координационные числа и плотность упаковки в атомно-ковалентных кристаллах невелики.

В ионных кристаллах структурными единицами являются положительно и отрицательно заряженные ионы, между которыми происходит электростатическое взаимодействие, характеризуемое достаточно высокой энергией. Этим объясняются свойства веществ с ионными кристаллами. Из-за ненаправленности и ненасыщенности связей и сферической формы частиц координационные числа у ионов могут быть высокими. У соединений со сложными ионами форма кристаллической решетки искажается.

Металлические кристаллы характеризуются рядом особых свойств: высокими электрической проводимостью, теплопроводностью, ковкостью, пластичностью, металлическим блеском и высокой отражательной способностью. Эти специфические свойства металлов объясняются особым типом химической связи, получившей название металлической.

У большинства металлов на внешней электронной оболочке имеется значительное число вакантных орбиталей и малое число электронов, поэтому энергетически более выгодно, чтобы электроны не были локализованы, а принадлежали всему металлу. Между положительно заряженными ионами металла и нелокализованными электронами существует электростатическое взаимодействие, обеспечивающее устойчивость вещества. Энергия этого взаимодействия является промежуточной между энергиями ковалентных и молекулярных кристаллов. Наличие электронов, которые могут свободно перемещаться по объему кристалла, обеспечивает высокие электрическую проводимость и теплопроводность, а также ковкость и пластичность металлов.

Тот или иной вид химической связи или взаимодействия в чистом виде в кристаллах встречается редко. Обычно между частицами существуют сложные взаимодействия, которые описываются наложением двух или более видов связей друг на друга. Это так называемые кристаллы со смешанными связями. Так, в некоторых кристаллах наряду с ван-дер-ваальсовыми силами возникают водородные связи, значительно упрочняющие кристаллы. Ионная связь в чистом виде практически отсутствует, так как между частицами в ионных кристаллах также действует ковалентная связь. У - или f-металлов наряду с нелокализованной металлической связью могут действовать ковалентные связи между соседними атомами. В атомных кристаллах наряду с ковалентной связью могут существовать ван-дер-ваальсовы силы с образованием двумерных плоских (слоистых) структур. Такие соединения называют интеркалятами. Особенно это характерно для кристаллов с включением графита.

Слоистые соединения являются разновидностью особого класса соединений, называемых клатратами или соединениями включения, которые образованы включением молекул «гостей» в полости кристаллического каркаса, состоящего из частиц другого вида – «хозяев».

При перекачке углеводородных газов под давлением образуются твердые газовые клатраты, которые, осаждаясь на внутренних поверхностях трубопроводов и арматуры, забивают их и тем самым нарушают процесс перекачки.