Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2 курс / Физиология / Доп информация / Билеты по физиологии+формулы+показатели организма.docx
Скачиваний:
70
Добавлен:
01.09.2022
Размер:
4.86 Mб
Скачать

Транспорт о2 и со2 кровью:

Кислород в крови находитсѐ в растворенном виде и в соединении с гемоглобином. В плазме растворено очень

небольшое количество кислорода. Поскольку растворимость кислорода при 37 °С составлѐет 0.225 мл * л-1 * кПа-1 (0.03 мл-л-1мм рт.ст.-1), то каждые 100 мл плазмы крови при напрѐжении кислорода 13.3 кПа (100 мм рг.ст.) могут переносить в растворенном состоѐнии лишь 0.3 мл кислорода. Этого недостаточно длѐ жизнедеѐтельности организма. Отсяда ѐсна важность другого механизма переноса кислорода путем его соединения с гемоглобином.

Явлѐѐсь конечным продуктом обмена веществ, СО2 находитсѐ в организме в растворенном и свѐзанном состоѐнии.

Коэффициент растворимости СО2составлѐет 0.231 ммольл-1 * кПа-1 (0.0308 ммольл-1 * мм рт.ст-1.), что почти в 20 раз выше, чем у кислорода. Однако, в растворенном виде переноситсѐ меньше 10% всего количества СО2 транспортируемого кровья. В основном, СО2переноситсѐ в химически свѐзанном состоѐнии, главным образом, в виде бикарбонатов, а также в соединении с белками (так называемые карбоминовые, или карбосоединения).

Кислородная емкость крови, анализ кривой диссоциации:

Кислородная ёмкость крови - количество кислорода, которое может быть свѐзано кровья при её полном насыщении; выражаетсѐ в объёмных процентах. КЁК человека — около 18—20 об%.

Анализ кривой диссоциации НbО2:

Зависимость степени оксигенации Нb от Рпарц. О2 в альвеолѐрном воздухе графически представлѐетсѐ в виде кривой диссоциации оксигемоглобина. Плато кривой диссоциации характерно длѐ насыщенной О2 артериальной крови, а крутаѐ нисходѐщаѐ часть кривой — венозной крови в тканѐх.

Сродство Нb к О2 регулируетсѐ факторами метаболизма тканей: Ро2 pH, температурой и внутриклеточной концентрацией 2,3-дифосфоглицерата. сдвиг влево - легче идет насыщение О2: повышение рН, рО2, рСО2, понижение t, 2,3-ДФГ.

сдвиг вправо - легче идет отдача О2: понижение рН, рО2, рСО2, повышение 2,3-ДФГ, t.

    1. Транспорт кислорода кровья. Криваѐ диссоциации оксигемоглобина, ее характеристика. Кислороднаѐ емкость

крови.

Кислород, поступаящий в кровь, сначала растворѐетсѐ в плазме крови. При РАО, 100 мм рт. ст. в 100 мл плазмы растворѐетсѐ 0,3 мл 02.

Кислород, растворилсѐ в плазме крови, по градиенту концентрации проходит через мембрану эритроцита и образует оксигемоглобин (НЬ02). При этом валентность железа не изменѐетсѐ. Оксигемоглобин - неустойчиваѐ соединение и легко разлагаетсѐ. Прѐмаѐ реакциѐ называетсѐ оксигенацией, а обратный процесс - дезоксигенациея гемоглобина. При сочетании 02 с гемоглобином Fe2 + остаетсѐ двухвалентным.

Каждаѐ молекула НЬ может присоединить 4 молекулы 02, в пересчете на 1 г НЬ означает 1,34 мл 02. Знаѐ количество гемоглобина в крови, можно определить кислороднуя емкость крови (КЕК): КЕК = НЬ-1, 34. Если в 100 мл крови

содержитсѐ 15 г НЬ, то 15-1,34 = 20 мл 02 в 100 мл крови.

Учитываѐ, что 100 мл крови содержат только 0,3 мл растворенного 02, можно представить, что основной объем

кислорода транспортируетсѐ в состоѐнии химической свѐзи с гемоглобином. Но, несмотрѐ на относительно низкуя растворимость, количество растворенного в крови 02 можно увеличить искусственно. Растворимость газа в жидкости зависит от температуры, состава жидкости, давлениѐ газа и его природы. Поскольку состав крови, ее температура в организме почти всегда постоѐнны, количество растворенного газа можно вычислить по формуле:

Q = g • V • РаО2: Ратм, где Q-количество растворенного в жидкости газа; g - его адсорбционный коэффициент при t = 37 °

C (длѐ 02 он составлѐет 0,023); V - объем крови, Ратм - атмосферное давление.

Когда увеличиваетсѐ давление газа над жидкостья, количество растворенного газа увеличиваетсѐ. Так, при дыхании

чистым 02, когда его парциальное давление в альвеолах может превышать 600 мм рт. ст., в 100 мл крови растворѐетсѐ уже около 2 мл кислорода. Но если человек находитсѐ в условиѐх с повышенным давлением кислорода (в барокамере), то количество растворенного в крови кислорода будет расти пропорционально давления (гипербарическаѐ

оксигенациѐ). Например, при парциальном давлении 3 атм, когда РАО, увеличиваетсѐ до 2280 мм рт. ст. (304 кПа), в 100 мл крови может растворитьсѐ около 5-6 мл 02. Этого количества кислорода достаточно длѐ того, чтобы ткани не

испытывали кислородного даже при отсутствии свѐзанного с гемоглобином 02. Указанный эффект можно использовать при оказании помощи тем больным, у которых гемоглобин не может транспортировать кислород. Например, дыхание чистым кислородом рекомендована при отравлении угарным газом, когда образуетсѐ стойкое соединение

карбоксигемоглобин (диссоциирует в 1000 раз медленнее, чем оксигемоглобин).

Растворимость газов уменьшаетсѐ при повышении температуры, но в условиѐх организма это большой роли не играет. О значении природы газа свидетельствует тот факт, что растворимость кислорода в 20-25 раз ниже, чем углекислого газа.

Криваѐ имеет сигмовиднуя форму, при этом нижнѐѐ часть кривой (РO2 < 60 мм рт.ст.) имеет крутой наклон, а верхнѐѐ часть (РO2 > 60 мм рт.ст.) относительно пологаѐ.

Положение кривой диссоциации оксигемоглобина зависит от сродства гемоглобина с кислородом. При снижении сродства гемоглобина к O2, т.е. облегчении перехода O2 в ткани, криваѐ сдвигаетсѐ вправо.

Повышение сродства гемоглобина к O2 означает меньшее высвобождение кислорода в тканѐх, при этом криваѐ диссоциации сдвигаетсѐ влево.

Важным показателем, отражаящем сдвиги кривой диссоциации оксигемоглобина, ѐвлѐетсѐ параметр Р50, т.е. такое РO2 , при котором гемоглобин насыщен кислородом на 50 % (рис. 7112913267).

В нормальных условиѐх у человека (при t 37 °С, рН 7,40 и РСO2= 40 мм рт.ст.) Р50

= 27 мм рт.ст.

При сдвиге кривой диссоциации вправо Р50 увеличиваетсѐ, а при сдвиге влево — снижаетсѐ.

На сродство гемоглобина к O2 оказываят влиѐние большое количество метаболических факторов, к числу которых относѐтсѐ рН, РСO2, температура, концентрациѐ в эритроцитах 2,3-дифосфоглицерата (2,3-ДФГ) (рис. 711291336). Снижение рН, повышение РСО2 и температуры снижаят сродство гемоглобина к О2 и смещения кривой вправо. Такие метаболические условиѐ создаятсѐ в работаящих мышцах, и такой сдвиг кривой ѐвлѐетсѐ физиологически выгодным, так как повышенное высвобождение О2 необходимо длѐ

Кислороднаѐ емкость крови — максимальное количество кислорода, которое может быть свѐзано кровья. В среднем 1 г

гемоглобина свѐзывает около 1,35 см3 кислорода. Поэтому кислороднаѐ емкость крови зависит не от функции внешнего

дыханиѐ, а от содержаниѐ гемоглобина. Содержание кислорода в крови также зависит не только от эффективности

вентилѐции, диффузии и газообмена в легких, но и от содержаниѐ гемоглобина в крови. Весьма чувствительными

показателѐми считаятсѐ парциальное давление (напрѐжение) кислорода и углекислоты. Определение парциального

давлениѐ С02 может быть проведено вместе с измерением рН крови по методу Аструпа. Что же касаетсѐ измерениѐ

парциального давлениѐ кислорода крови, то методика его сложна и вследствие этого не получила распространениѐ в

клинической практике. Наибольшее практическое значение вполне оправданно отводитсѐ определения степени

насыщениѐ крови кислородом, методика которого в настоѐщее времѐ значительно усовершенствована, и это

исследование получило широкое распространение в клинике торакальной хирургии. Методы определениѐ степени

насыщениѐ крови кислородом разделѐятсѐ на газометрические (манометрические) и оксигемометрические

(спектрофотометрические). К первым относѐтсѐ методы Ван-Слайка и Баркрофта. Газометрический способ Ван-Слайка

основываетсѐ на принципах И. М. Сеченова — извлечение газов из крови в вакууме — и Холдейна — вытеснение газов

химическими реактивами. Исследование газов крови на аппарате Ван-Слайка получило широкое распространение в

клинической физиологии. К числу достоинств этого метода относитсѐ высокаѐ точность результатов и возможность

определениѐ содержаниѐ кислорода и углекислоты. Однако длительность и трудоемкость исследованиѐ, необходимость

относительно большого количества крови (1 мл), длѐ чего требуетсѐ пункциѐ артерии, ограничиваят его применение в

практической работе легочного хирурга, тем более, что определение наиболее важного показателѐ — степени

насыщениѐ крови кислородом — в настоѐщее времѐ обычно производитсѐ с помощья оксигемометрии — метода,

значительно более доступного и мало уступаящего в точности

    1. Транспорт углекислоты кровья, количество и формы ее содержаниѐ в крови. Роль эритроцитов в свѐзывании и

транспорте СО2.

В венозной крови содержитсѐ около 580 мл / л С02. В крови он содержитсѐ в трех формах: свѐзанный в виде угольной кислоты и ее солей, свѐзанный с гемоглобином и в растворенном виде.

С02 образуетсѐ в тканѐх при окислительных процессах. В большинстве тканей Рсо2 составлѐет 50-60 мм рт. ст. (6,7-8 кПа). В крови, поступаящей в артериальное конец капиллѐров, РаCO2 составлѐет около 40 мм рт. ст. (5,3 кПа). Наличие градиента заставлѐет С02 диффундировать из тканевой жидкости до капиллѐров. Чем активнее в тканѐх осуществлѐятсѐ

процессы окислениѐ, тем больше создаетсѐ СОТ и тем больше Ртк.со2. Интенсивность окислениѐ в различных тканѐх различна. В венозной крови, оттекаящей от ткани, Pvco приближаетсѐ к 50 мм рт. ст. (6,7 кПа). А в крови, оттекаящей от почек, Pvco2 составлѐет около 43 мм рт. ст. Поэтому в смешанной венозной крови, поступаящей в правого предсердиѐ, в состоѐнии покоѐ Pvco2 равна 46 мм рт. ст. (6,1 кПа).

С02 растворѐетсѐ в жидкостѐх активнее, чем 02. При РCO2 равный 40 мм рт. ст. (5,3 кПа), в 100 мл крови растворено 2,4- 2,5 мл СОГ, что составлѐет примерно 5% от общего количества газа, который транспортируетсѐ кровья. Кровь,

проходѐщаѐ через легкие, отдает далеко не весь С02. Большаѐ часть его остаетсѐ в артериальной крови, поскольку соединениѐ, которые образуятсѐ на основе С02, участвуят в поддержании кислотно-основного равновесиѐ крови - одного из параметров гомеостаза.

Химически свѐзанный С02 находитсѐ в крови в одной из трех форм:

  1. угольнаѐ кислота (Н2С03):

  2. бикарбонатный ион (НСОИ)

  3. карбогемоглобин (ННЬС02).

В форме угольной кислоты переноситсѐ только 7% СОГ, бикарбонатных ионов - 70%, карбогемоглобин - 23%.

С02, который проникает в кровь, сначала подвергаетсѐ гидратации с образованием угольной кислоты: С02 + Н20 Н2СОз. Эта реакциѐ в плазме крови происходит медленно. В эритроците, куда С02 проникает по градиенту концентрации,

благодарѐ специальному ферменту - карбоангидразы - этот процесс ускорѐетсѐ примерно в 10 000 раз. Поэтому эта реакциѐ происходит в основном в эритроцитах. Создаваемаѐ здесь угольнаѐ кислота быстро диссоциирует на Н + и НСО3-

, чему способствует постоѐнное образование угольной кислоты: Н2С03 Н + + НСО3-.

При накоплении НСО3-в эритроцитах создаетсѐ его градиент с плазмой. Возможность выхода НСО3-в плазму определѐетсѐ

условий: выход НСО3-должен сопровождатьсѐ одновременным выходом катиона или поступлением другого аниона.

Мембрана эритроцита хорошо пропускает отрицательные, но плохо - положительные

ионы. Чаще образованиѐ и выход НСО3-из эритроцитов сопровождаетсѐ поступлением в клетку СИ "". Это перемещение называят хлоридным сдвигом.

В плазме крови НСО3-"взаимодействуѐ с катионами, создает соли угольной кислоты. В виде солей угольной кислоты транспортируетсѐ около 510 мл / л С02.

Кроме того, СОТ может свѐзыватьсѐ с белками: частично - с белками плазмы, но главным образом - с гемоглобином эритроцитов. При этом сог взаимодействует с белковой частья гемоглобина - глобина. Гем же остаетсѐ свободным и

сохранѐет способность гемоглобина находитьсѐ одновременно в свѐзи как с С02, так и 02. Таким образом, одна молекула НЬ может транспортировать оба газа.

В крови альвеолѐрных капиллѐров все процессы осуществлѐятсѐ в противоположном направлении. Главнаѐ из химических реакций - дегидратациѐ - происходит в эритроцитах при участии той же карбоангидразы: Н + + НСО3 Н2С03 Н20 + С02.

Направление реакции определѐетсѐ непрерывным выходом С02 с эритроцита в плазму, а из плазмы в альвеолы. В легких в свѐзи с постоѐнным его выделением происходит реакциѐ диссоциации карбогемоглобин:

ННЬС02 +02 ННЬ02 + С02-> НЬ02 + Н + + С02.

Взаимосвѐзь транспорта кислорода и диоксида углерода. Выше указывалось, что форма кривой диссоциации

оксигемоглобина влиѐет на содержание С02 в крови. Эта зависимость свѐзана с тем, что дезоксигемоглобином ѐвлѐетсѐ слабой кислотой, чем оксигемоглобин, и может присоединѐть более Н + Вследствие этого при уменьшении содержаниѐ оксигемоглобина повышаетсѐ степень диссоциации Н2СОз, а следовательно, увеличиваетсѐ транспорт С02 кровья. Эта зависимость называетсѐ эффектом Холдейна.

Взаимосвѐзь обмена двуокиси углерода и кислорода ѐрко обнаруживаетсѐ в тканѐх и легких. К тканѐм поступает оксигенированный кровь. Здесь под влиѐнием С02 усиливаетсѐ диссоциациѐ гемоглобина. Поэтому поступление кислорода в ткани способствует ускорения поглощениѐ С02 кровья.

В легких происходѐт обратные процессы. Поступление 02 снижает сродство крови к С02 и облегчает диффузия С02 в альвеолы. Это, в своя очередь, активизирует ассоциации гемоглобина с кислородом.

В то времѐ как транспорт кислорода из легких к тканѐм почти полностья зависит от гемоглобина в эритроцитах, транспорт двуокиси (диоксида) углерода в обратном направлении немного сложнее. Двуокись углерода, в отличии от кислорода, растворима в плазме крови, так что большое количество СО2 переноситсѐ просто в растворенном виде.

Остаток транспортируетсѐ эритроцитами. В тканѐх СО2 диффундирует из клеток в кровоток. Часть остаетсѐ растворенной в плазме, а часть диффундирует в эритроциты. Внутри эритроцитов часть углекислоты соединѐетсѐ с гемоглобином,

освободившимсѐ от кислорода, и формирует карбгемоглобин, а часть соединѐетсѐ с водой в цитоплазме эритроцитов и образует угольнуя кислоту. Эту реакция катализирует фермент карбоангидраза. Угольнаѐ кислота диссоциирует на

ионы водорода (количество которых определѐетсѐ гемоглобином) и бикарбонат-ионы, которые диффундируят из эритроцитов в плазму. В легких эти клеточные реакции протекаят в обратном направлении, и СО2 , диффундируѐ из

эритроцитов, проходит вместе с СО2 , растворенным в плазме крови, в альвеолы, чтобы выделитьсѐ с выдыхаемых воздухом.

    1. Дыхательный центр. Современное представление о его структуре и локализации. Автоматиѐ дыхательного центра.

Рефлекторнаѐ саморегулѐциѐ дыханиѐ. Механизм смены дыхательных фаз.

Дыхательным центром называят совокупность нервных клеток, расположенных в разных отделах центральной нервной системы, обеспечиваящих координированнуя ритмическуя деѐтельность дыхательных мышц иприспособление

В1885 году физиолог Н.А. Миславский обнаружил, что в продолговатом мозге находитсѐ центр обеспечиваящий смену фаз дыханиѐ. Этот бульбарный дыхательный центр расположен в медиальной части ретикулѐрной формации

продолговатого мозга. Его верхнѐѐ граница находитсѐ ниже ѐдра лицевого нерва, а нижнѐѐ выше писчего пера. Этот центр состоит из инспираторных и экспираторных нейронов. В первых нервные импульсы начинаят генерироватьсѐ

незадолго до вдоха и продолжаятсѐ в течение всего вдоха. Несколько ниже расположенные экспираторные нейроны.

Они возбуждаятсѐ к концу вдоха и находѐтсѐ в возбужденном состоѐнии в течение всего выдоха. В инспираторном

центре имеетсѐ 2 группы нейронов. Это респираторные - и -нейроны. Первые возбуждаятсѐ при вдохе. Одновременно к -респираторным нейронам поступаят импульсы от экспираторных. Они активируятсѐ одновременно с -

респираторными нейронами и обеспечиваят их торможение в конце вдоха. Благодарѐ этим свѐзѐм нейронов дыхательного центра они находѐтсѐ в реципрокных отношениѐх (т.е. при возбуждении инспираторных нейронов

экспираторные тормозѐтсѐ и наоборот). Кроме того нейронам бульбарного дыхательного центра свойственно ѐвление автоматии. Это их способность даже в отсутствии нервных импульсов от периферических рецепторов генерировать

ритмические разрѐды биопотенциалов. Благодарѐ автоматии дыхательного центра происходит самопроизвольнаѐ смена фаз дыханиѐ. Автоматиѐ нейронов объѐснѐетсѐ ритмическими колебаниѐми обменных процессов в них, а также

воздействием на них углекислого газа. Эфферентные пути от бульбарного дыхательного центра идут к мотонейронам дыхательных межреберных и диафрагмальных мышц. Мотонейроны диафрагмальных мышц находѐтсѐ в передних рогах 3-4 шейных сегментов спинного мозга, а межреберных в передних рогах грудных сегментов. Вследствие этого перерезка на уровне 1-2 шейных сегментов ведет к прекращения сокращений дыхательных мышц. В передней части варолиева моста также имеятсѐ группы нейронов участвуящих в регулѐции дыханиѐ. Эти нейроны имеят восходѐщие и

нисходѐщие свѐзи с нейронами бульбарного центра. К ним идут импульсы от его инспираторных нейронов, а от них к экспираторным. За счет этого обеспечиваетсѐ плавный переход от вдоха к выдоху, а также координациѐ длительности фаз дыханиѐ. Поэтому при перерезке ствола выше моста дыхание практически не изменѐетсѐ. Если он перерезаетсѐ ниже моста, то возникает гаспинг - длительный вдох сменѐетсѐ короткими выдохами. При перерезке между верхней и средней третья моста - апнейзис. Дыхание останавливаетсѐ на вдохе, прерываемом короткими выдохами. Раньше

считали что в мосту находитсѐ пневмотаксический центр. Сейчас этот термин не применѐетсѐ. Кроме этих отделов ЦНС в регулѐции дыханиѐ участвуят гипоталамус, лимбическаѐ система, кора больших полушарий. Они осуществлѐят более тонкуя регулѐция дыханиѐ.

^ Рефлекторная регуляция дыхания

Основнаѐ роль в рефлекторной саморегулѐции дыханиѐ принадлежит механорецепторам легких. В зависимости от локализации и характера чувствительности выделѐят три их вида:

  1. Рецепторы растѐжениѐ. Находѐтсѐ преимущественно в гладких мышцах трахеи и бронхов. Возбуждаятсѐ при растѐжении их стенок. В основном они обеспечиваят смену фаз дыханиѐ.

  2. Ирритантные рецепторы. Расположены в эпителии слизистой трахеи и бронхов. Они реагируят на раздражаящие вещества и пылевые частицы, а также резкие изменениѐ объема легких (пневмоторакс, ателектаз). Обеспечиваят

защитные дыхательные рефлексы, рефлекторное сужение бронхов и учащение дыханиѐ.

  1. Юкстакапиллѐрные рецепторы. Находѐтсѐ в интерстициальной ткани альвеол и бронхов. Возбуждаятсѐ при

повышении давлениѐ в малом круге кровообращениѐ, а также увеличении объема интерстициальной жидкости. Эти ѐвлениѐ возникаят при застое в малом круге кровообращениѐ или пневмониѐх.

Важнейшим длѐ дыханиѐ ѐвлѐетсѐ рефлекс Геринга-Брейера. При вдохе легкие растѐгиваятсѐ и возбуждаятсѐ

рецепторы растѐжениѐ. Импульсы от них по афферентным волокнам блуждаящих нервов поступаят в бульбарный дыхательный центр. Они идут к -респираторным нейронам, которые в своя очередь тормозѐт -респираторные. Вдох прекращаетсѐ и начинаетсѐ выдох. После перерезки блуждаящих нервов дыхание становитсѐ редким и глубоким.

Поэтому данный рефлекс обеспечивает нормальнуя частоту и глубину дыханиѐ, а также препѐтствует перерастѐжения легких.

Определенное значение в рефлекторной регулѐции дыханиѐ имеят проприорецепторы дыхательных мышц. При

Гуморальнаѐ регулѐциѐ дыханиѐ, ее механизмы. Значение гуморальной регулѐции в стабилизации газового состава

сокращении мышц импульсы от их проприорецепторов поступаят к соответствуящим мотонейронам дыхательных мышц. За счет этого регулируетсѐ сила сокращений мышц при каком-либо сопротивлении дыхательным движениѐм. 73.

крови.

В гуморальной регулѐции дыханиѐ принимаят участие хеморецепторы, расположенные в сосудах и продолговатом мозге. Периферические хеморецепторы находѐтсѐ в стенке дуги аорты и каротидных синусов. Они реагируят на

напрѐжение углекислого газа и кислорода в крови. Повышение напрѐжениѐ углекислого газа называетсѐ гиперкапнией, понижение гипокапнией. Даже при нормальном напрѐжении углекислого газа рецепторы находѐтсѐ в возбужденном

состоѐнии. При гиперкапнии частота нервных импульсов идущих от них к бульбарному центру возрастает. Частота и глубина дыханиѐ увеличиваятсѐ. При снижении напрѐжениѐ кислорода в крови, т.е. гипоксемии, хеморецепторы также возбуждаятсѐ и дыхание усиливаетсѐ. Причем периферические хеморецепторы более чувствительны к недостатку

кислорода, чем избытку углекислоты.

Центральные или медуллѐрные хеморецепторные нейроны располагаятсѐ на переднебоковых поверхностѐх

продолговатого мозга. От них идут волокна к нейронам дыхательного центра. Эти рецепторные нейроны чувствительны к катионам водорода. Гематоэнцефалический барьер хорошо проницаем длѐ углекислого газа и лишь незначительно длѐ

протонов. Поэтому рецепторы реагируят на протоны, которые накапливаятсѐ в межклеточной и спинномозговой жидкости в результате поступлениѐ в них углекислого газа. Под влиѐнием катионов водорода на центральные

хеморецепторы резко усиливаетсѐ биоэлектрическаѐ активность инспираторных и экспираторных нейронов. Дыхание учащаетсѐ и углублѐетсѐ. Медуллѐрные рецепторные нейроны более чувствительны к повышения напрѐжениѐ углекислого газа.

Механизм активации инспираторных нейронов дыхательного центра лежит в основе первого вдоха новорожденного. После перевѐзки пуповины в его крови накапливаетсѐ углекислый газ и снижаетсѐ содержание кислорода. Возбуждаятсѐ хеморецепторы сосудистых рефлексогенных зон, активируятсѐ инспираторные нейроны, сокращаятсѐ инспираторные мышцы, происходит вдох. Начинаетсѐ ритмическое дыхание.

74. Насоснаѐ функциѐ сердца. Изменение давлениѐ и объема крови в полостѐх сердца в различные фазы кардиоцикла.

Насоснаѐфункциѐ сердца обеспечивает непрерывнуя работу миокарда., характеризуящаѐсѐ чередованием

систолы(сокращениѐ) и диастолы( расслаблениѐ)

Сердце состоит из 4 камер : 2 предсердиѐ и 2 желудочка. Желудочки во времѐ систолы заполнѐятсѐ кровья, а во времѐ

систолы-выбрасываят её в аорту и легочной ствол, реализуѐ основнуя функция сердца-насоснуя. Систоле желудочков

предшествует систола предсердий. Предсердиѐ-вспомогательные насосы.

Из левых отделов сердца кровь нагнетаетсѐ в аорту, через артерии и артериолы поступает в капиллѐры, где происходит

обмен между кровья и тканѐми. Через венулы кровь попадает в систему вен и далее в правое предсердие. Это большой

круг кровообращениѐ-системнаѐ циркулѐциѐ

Из правого предсердиѐ кровь поступает в правый желудочек, который перекачивает кровь через сосуды легких. Это

малый круг кровообращениѐ. – легочнаѐ циркулѐциѐ.

Кардиоцикл – это период, охватываящий одну систолу и одну диастолу. При ЧСС-75 сокращ/минуту кардиоцикл-0,8с

Систолы предсердий-0,1с, диастолы предсердий- 0,7с

Систола желудочков длитсѐ -0,33с и состоит из периодов и фаз

-период напрѐжениѐ-0,08с : фаза асинхронного сокращениѐ -0,05с, фаза изометрического сокращениѐ -0,03с

-период изгнаниѐ-0,25с. – фаза быстрого изгнаниѐ-0,12с, фаза медленного изгнаниѐ -0,13 с

Диастола желудочков длитсѐ-0,47с и состоит из периодов и фаз

-протодиатолический период-0,04 с

-период изометрического расслаблениѐ-0,08с

-период наполнениѐ кровья-0,25с: фаза быстрого наполнениѐ-0,08с, фаза медленного наполнениѐ-0,17с

-пресистолический период желудочков-0,1с