Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сборник мет.препод..doc
Скачиваний:
157
Добавлен:
15.03.2015
Размер:
10.18 Mб
Скачать

Лазер. Принцип действия. Свойства лазерного излучения, на которых основано их применение.

Лазером (или оптическим квантовым генератором) называется устройство, генерирующее когерентные электромагнитные волны за счет вынужденного испускания света активной средой, находящейся в резонаторе.

В основе работы лазеров лежат фундаментальные процессы, происходящие при взаимодействии электромагнитных волн с веществом, а именно процессы спонтанного и вынужденного (индуцированного) излучения и процесс поглощения.

Внутренняя энергия частиц может принимать ряд определенных дискретных значений, соответствующих энергетическим состояниям или энергетическим уровням. Самый нижний энергетический уровень с наименьшей энергией частицы – основной, остальные энергетические уровни с более высокой энергией частицы – возбужденные. Переход частицы с уровня на уровень могут быть излучательными или поглощательными.

Переход частиц (молекул, атомов, ионов и атомных ядер) с более высокого энергетического уровня Е2 на уровень Е1 может происходить самопроизвольно и носит название спонтанного излучения (рис. 6а). Такой переход сопровождается излучением фотонов в результате ускорения и

торможения заряженных частиц. Фотон – это элементарная частица света, обладающая волновыми свойствами и энергия которой определяется так: E=hν, h = 6,62∙10-34 Дж∙сек – постоянная Планка, ν – частота излучения.

Следовательно, спонтанное излучение сопровождается выделением кванта энергии hν= Е2 - Е1.

Частицы, находящиеся в возбужденном энергетическом состоянии могут перейти в низшее (обычно нормальное, основное) энергетическое состояние под действием внешнего электромагнитного поля. Электромагнитное поле как бы «сваливает» атом с возбужденного энергетического уровня вниз, на основной или менее возбужденный. Такое излучение под действием электромагнитной волны носит название индуцированного (вынужденного) излучения (рис. 6с). Явление вынужденного излучения сводится к увеличению интенсивности электромагнитной волны, проходящей через вещество.

Главное свойство индуцированного излучения: частота, поляризация, направление распространения кванта энергии вынужденного излучения совпадают с соответствующими характеристиками внешнего поля, т.е. вынужденное излучение строго когерентно с вызвавшим его проходящим светом.

Под действием внешнего электромагнитного поля частица может переходить с нижнего на более высокий уровень, поглотив квант энергии. Такой переход носит название резонансного поглощения (рис. 6в).

Поглощение фотонов уменьшает интенсивность света, проходящего через среду. На рис. 7 схематически представлены два конкурирующих друг с другом процесса: поглощения и вынужденного излучения. Первый процесс уменьшает

число фотонов, проходящих через среду. Второй процесс увеличивает число фотонов, проходящих через среду.

До взаимодействия После взаимодействия

а) Поглощение

Е2

Б) Вынужденное излучение

Рис. 7

Среда называется активной или средой с инверсной населенностью, ели процессы вынужденного излучения преобладают над процессами поглощения света. В такой среде возрастание интенсивности I проходящего света с увеличением толщины активной среды (рис. 8) происходит быстрее за счет лавинообразного нарастания числа фотонов (рис. 9).

Рис. 8

Рис. 9

Для получения активной среды необходимо создать в среде необычное, неравновесное состояние (инверсное состояние): число атомов (молекул, ионов) на возбужденном уровне должно быть больше, чем на нижнем уровне. Такое распределение атомов по уровням является «перевернутым», «инверсным» по сравнению с обычным. Обычно на верхних уровнях атомов меньше, чем на нижних.

Процесс перевода среды в инверсное состояние называется накачкой усиливающей среды. Имеется несколько способов, с помощью которых можно реализовать этот процесс на практике, например, при помощи некоторых видов ламп, дающих достаточно интенсивную световую волну, или посредством электрического разряда в активной среде.

Накачка осуществляется по трех- или четырехуровневой схеме лазера. Например, типичным и наиболее используемым лазером на нейтральных атомах является гелий-неоновый лазер, в котором усиливающей средой служит плазма высокочастотного газового разряда, полученная в смеси гелия с неоном. На рис. 10 изображена упрощенная трехуровневая энергетическая диаграмма такого лазера.

Рис. 10

Под действием электрического разряда часть атомов He ионизируется и образуется плазма, содержащая электроны с большой кинетической энергией, которые, сталкиваясь с атомами He, переводят их из основного состояния Е1 на долгоживущий возбужденный уровень Е3. При столкновениях возбужденных атомов He с атомами Ne последние также возбуждаются и переходят на один из верхних уровней неона. Переход атомов неона с этого уровня на один из нижних уровней Е2 сопровождается лазерным излучением.

Эффект усиления света в лазерах увеличивается за счет многократного прохождения усиливаемого света через один и тот же слой активной среды. Это может быть достигнуто, ели слой активной среды (кювета с газом или кристалл) пометить между двумя зеркалами, установленными параллельно друг другу. Одно зеркало – «глухое» З1 с высоким коэффициентом отражения (около 100%) и второе, полупрозрачное зеркало З2, через которое проходит излучение.

Чтобы заставить активную среду излучать, надо перевести возможно большее число атомов в возбужденное состояние, для этого можно использовать газовый разряд. Как это делается в газоразрядных трубках, используемых для рекламы. Итак, фотон А, который движется параллельно оси кюветы или кристалла, рождает лавину фотонов, летящих в то же направлении (рис. 11а).

а)

б)

в)

Рис. 11

Часть этой лавины проходит через полупрозрачное зеркало З2 наружу, а часть отражается и нарастает в активной среде (рис. 11б). Когда лавина фотонов дойдет до зеркала З1, она частично поглотится, и после отражения от зеркала З1

усиленный поток фотонов будет двигаться так же, как и первоначальный «затравочный» фотон. Поток фотонов, многократно усиленный и вышедший из генератора сквозь полупрозрачное зеркало З2, создает пучок лучей света огромной интенсивности с малым расхождением по углам, т.е. остронаправленный. Таким образом, зеркала осуществляют положительную обратную связь: излучение одного атома увеличивает вероятность излучения других. Фотоны В и С (рис. 11а), летящие «вбок», под углом к оси кювета или кристалла, создают лавины, которые после небольшого числа отражений выходят из активной среды и в усилении света не участвуют.

Принципиальная схема действия лазера изображена на рис. 12

Рис. 12

Лазер, как любой генератор, состоит из следующих основных элементов: источника энергии (И), регулятора (Р), колебательной системы (КС) и обратной связи (ОС), которая соединяет колебательную систему и регулятор. Источник энергии поставляет ее в виде удобном для переработки ее в лазерное излучение. В качестве колебательного устройства служат электронные переходы между энергетическими уровнями активной среды. Регулятором является система возбуждения энергетических уровней. Положительная обратная связь обеспечивает подкачку энергии в колебательную систему в нужной фазе колебаний.

Основные параметры лазерного излучения

Преимущества лазеров по сравнению с некогерентными тепловыми источниками определяется следующими их свойствами:

  1. Малая угловая расходимость позволяет фокусировать излучение линзами и вогнутыми зеркалами вплоть до 1 мкм и создавать значительные плотности мощности на облученных участках.

  2. Монохроматичность характеризует длину волны λ и спектральную ширину излучения Δλ. Ее мерой является отношение Δλ к среднему значению λ. Для лазеров монохроматичность излучения высока и составляет около 10-5.

  3. Когерентность и поляризованность – эти характеристики важны в диагностических исследованиях. Лазерное излучение обладает высокой когерентностью за счет явления вынужденного излучения. Излучение, создаваемое отдельными точками активной среды, имеет сдвиги фазы, соответствующие распространению одной плоской электромагнитной волны, так что из лазера выходит электромагнитная волна с постоянной фазой и амплитудой.

  4. Высокая интенсивность лазерного излучения позволяет сконцентрировать в малом объеме значительную энергию.

Вслед за созданием первых лазеров более чем 30 лет тому назад почти сразу появился интерес к взаимодействию когерентного монохроматического излучения с биологическими системами. Лазерная медицина развивается в основном в двух направлениях:

  • Макродеструкции целостности тканей и клеток, являющейся основой лазерной хирургии.

  • Молекулярной фотомедицины, основанной на фотофизических

процессах и последующих фотохимических и фотобиологических реакциях в молекулах и клетках, являющейся основой лазерной терапии.

Каждое из этих направлений требует своих типов лазеров, которые отличаются по длинам волн, значениям выходной мощности и энергии, длительности и скважности импульсов, а также своих способов доставки излучения к биологической ткани. Лазеры, используемые в медицине, перекрывают диапазон длин волн от 100 нм до 30 мкм, уровни выходной мощности составляют от нескольких милливатт до десятков и сотен ватт; энергия в импульсе изменяется в пределах от нескольких миллиджоулей до нескольких джоулей; длительность импульсов изменяется от единиц фемтосекунд (10-15сек) до нескольких миллисекунд; ширина спектра излучения лазеров – от нескольких герц до десятков гигагерц, угловая расходимость – от тысячных долей градуса у газоразрядных лазеров до десятков градусов у полупроводниковых лазеров. В таблице 1 приведены основные характеристики твердотельных лазеров.

Таблица 1.

Активное вещество

Длина волны излучения, мкм

Энергия в импульсе, Дж

Расходимость излучения, мрад

Частота повторения импульсов, Гц

К.п.д. в режиме свободной генерации, %

Рубин

0,6943

0,5

20-40

0,03

1-1,5

Стекло с неодимом

1,06

5000

10-15

0,01

1,5-2

Иттрий алюминиевый гранат

1,064

1100

20-30

108-109

2,1-3

Лабораторная работа