Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-21 (Оригинал) 2.doc
Скачиваний:
15
Добавлен:
19.11.2019
Размер:
1.63 Mб
Скачать

31 Вопрос

Пусть  ограниченная замкнутая область плоскости с кусочно-гладкой границей и пусть функция определена и ограничена на  . Посредством сетки кусочно-гладких кривых разобьем на конечное число элементарных областей с площадями (разбиение ). Пусть - наибольший из диаметров областей , получающийся при разбиении . В каждой из элементарных областей выберем произвольную точку . Число   называется интегральной суммой и ставится в соответствие каждому разбиению и каждому выбору точек . Если существует   и он не зависит от выбора разбиения  и точек , то функция называется интегрируемой по Риману в области , а сам предел называется двойным интегралом от функции  по области и обозначается    или   . Двойной интеграл существует, если  непрерывна на . Допустимы точки разрыва первого рода, лежащие на конечном числе гладких кривых в .

32. вопрос

Двойной интеграл в полярных координатах.

Вычисление Пусть требуется посчитать по области , которая задается в полярных координатах условиями .

Сделаем замену переменных .При этой замене нарушается взаимная однозначность отображения. Точке соответствует целый отрезок на оси . Однако точка имеет нулевую площадь и теорема справедлива. Осталось вычислить . , . .Следовательно, .

33. вопрос

Тройной интеграл.

При рассмотрении тройного инеграла не будем подробно останавливаться на всех тех теоретических выкладках, которые были детально разобраны применительно к двойному интегралу, т.к. существенных различий между ними нет.

Единственное отличие заключается в том, что при нахождении тройного интеграла интегрирование ведется не по двум, а по трем переменным, а областью интегрирования является не часть плоскости, а некоторая область в техмерном пространстве.

Суммирование производится по области v, которая ограничена некоторой поверхностью (x, y, z) = 0.

Здесь х1 и х2 – постоянные величины, у1 и у2 – могут быть некоторыми функциями от х или постоянными величинами, z1 и z2 – могут быть функциями от х и у или постоянными величинами.

Тройной интеграл. Его основные свойства и приложения. Вычисление тройного интеграла

Рассмотрим кубируемую область в трехмерном пространстве . Разбиение на части осуществляется непрерывными поверхностями. Диаметр разбиения определяется аналогично двумерному случаю. Также, по аналогии, можно определить для функции , разбиения области и выбранных точек интегральную сумму , где обозначает объем области .

Определение. Пусть такое число, что . Тогда мы говорим, что интегрируема на , число есть интеграл по области и обозначаем это так: .Как и в случае двойного интеграла, выполняются аналогичные свойства 1-6. Можно доказать, что если непрерывна на , то она интегрируема на . Точно также можно убедиться в том, что если точки разрыва лежат на конечном числе непрерывных поверхностей, лежащих в и разбивающих на кубируемые области, то интегрируема на .

Вычисление тройного интеграла производится по следующему правилу.

Теорема. Пусть задана следующими неравенствами: , . - квадрируемая область на плоскости, - непрерывные. Тогда

Замечание. Если область задана неравенствами , где - непрерывные функции, то

34. вопрос

Цилиндрическая система координат.

Связь координат произвольной точки Р пространства в цилиндрической системе с координатами в декартовой прямоугольной системе осуществляется по формулам:

Для представления тройного интеграла в цилиндрических координатах вычисляем Якобиан:

Итого:

Сферическая система координат.

Связь координат произвольной точки Р пространства в сферической системе с координатами в декартовой прямоугольной системе осуществляется по формулам:

Для представления тройного интеграла в сферических координатах вычисляем Якобиан:

Окончательно получаем:

38 вопрос

Корни многочлена

Как мы видели выше, методом выделения полного квадрата можно найти корни квадратного трехчлена. В случае многочленов высших степеней найти корни становится гораздо труднее, а иногда и просто невозможно. Попробуем это сделать там, где это достаточно просто. Рассмотрим многочлен где a 1,  a 2, ...,  a n − целые числа, a n  ≠ 0. Теорема о рациональных корнях многочлена Если многочлен с целыми коэффициентами имеет рациональный корень то число p является делителем числа (свободного члена), а число q является делителем числа (старшего коэффициента).

Доказательство  

Действительно, если число является корнем многочлена то а именно: Умножим обе части этого уравнения на получим: Так как − целые числа, то в скобке стоит целое число. Значит, вся правая часть этого равенства делится на q , так как q входит в неё в качестве сомножителя. А значит и левая часть тождества делится на q , так как она равна правой. Число p не делится на q , так как иначе дробь была бы сократимой, значит и не делится на q . Следовательно, на q делится единственный из оставшихся сомножителей левой части, а именно Аналогично доказывается, что делится на p . Теорема доказана.

39 вопрос

свойства:

1) Криволинейный интеграл при перемене направления кривой меняет знак.

2) 

   3)

  4)

  5) Криволинейный интеграл по замкнутой кривой L не зависит от выбора начальной точки, а зависит только от направления обхода кривой.

Криволинейный интеграл 2-го рода

Рассмотрим кривую AB, которую пока считаем незамкнутой.

Пусть проекция этой кривой на ось x представляет собой отрезок .

Пусть точки дают разбиение кривой AB. Рассмотрим их проекции , лежащие на отрезке и обозначим .

(Отметим, что точки не обязательно упорядочены так: , т.е. не обязательно дают разбиение отрезка , поэтому некоторые могут быть меньше 0!).

Пусть - определена на AB. Пусть - точка, лежащая на кривой между и . Положим .

Определение. Пусть . Если , то говорят, что I - это криволинейный интеграл второго типа