Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Molekulyarnaya_biotekhnologia_Glik_B__Pasternak_Dzh

.pdf
Скачиваний:
77
Добавлен:
17.12.2022
Размер:
12.13 Mб
Скачать

Предисловие к первому изданию

11

of Louisville; Fred Ausubel, Massachusetts General Hospital; David R. Benson, University of Connecticut; Jean E. Brenchley, Pennsylvania State University; A. M. Chakrabarty, University of Illinois at Chicago; Stan Gelvin, Purdue University; Janet H. Glaser. University of Illinois at Urbana-Champaign; David Gwynne, Cambridge NeuroScience; George D. Hegeman, Indiana University; James B. Kaper, University of Maryland at Baltimore; Donald R. Lightfoot, Eastern Washington University at Cheney and Spokane; Cynthia Moore, Washington University; William E. Newton, Virginia Polytechnic University; Danton H. O'Day, University of Toronto in Mississauga; Richard D. Palmiter, University of Washington; David H. Persing, Mayo Clinic; William S. Reznikoff, University of Wisconsin; Campbell W. Robinson, University of Waterloo; Marc Siegel, University of Waterloo; Aaron J. Shatkin, Center for Advanced Biotechnology and Medicine at Rutgers University; Jim Schwartz, Genentech; Daniel C. Stein, University of Maryland at College Park; Dean A. Stetler, University of Kansas; and Robert T. Vinopal, University of Connecticut.

Мы весьма признательны также сотрудникам ASM Press: Susan Birch, главному редактору; Rith Siega], менеджеру; Jodi Simpson, литературному редактору; Susan Schmidler,

главному художнику; Peg Markow из Rüttle, Shaw & Wetherill, Inc., главному менеджеру проекта; художникам Network Graphics; и наконец, Patrick Fitzgerald, директору ASM Press,

который всеми доступными способами помогал претворению нашего замысла в жизнь.

Бернард Р. Глик Джек Дж. Пастернак

Часть I. Основы молекулярной

биотехнологии

Молекулярная биотехнология — это увлекательнейшая область научных исследований, с появлением которой произошел настоящий переворот во взаимоотношениях человека с живой природой. В ее основе лежит перенос единиц наследственности (генов) из одного организма в другой, осуществляемый методами генной инженерии (технология рекомбинантных ДНК). В большинстве случаев целью такого переноса является создание нового продукта или получение уже известного продукта в промышленных масштабах. В ч. I мы познакомим читателя с концепциями молекулярной биотехнологии и теми микроорганизмами, которые в ней используются, с основами молекулярной биологии и методологией рекомбинантных ДНК. Будут описаны такие методы, как химический синтез генов, полимеразная цепная реакция (ПЦР), определение нуклеотидной последовательности (секвенирование) ДНК. Помимо успешного клонирования нужного гена очень важно обеспечить его правильное функционирование в организме нового хозяина, поэтому мы остановимся также на способах оптимизации работы клонированных генов в про- и эукариотических системах. И наконец, мы рассмотрим, как можно улучшить свойства конечных продуктов, модифицируя клонированные гены путем введения в них специфических нуклеотидных замен (мутагенез in vitro). В целом материал, изложенный в первой части, служит фундаментом, который позволяет понять различные аспекты конкретных применений молекулярной биотехнологии.

ГЛАВА 1. Молекулярно-биотехнологическая революция

Технология рекомбинантных ДНК

15 октября 1980 г. на Нью-Йоркской фондовой бирже произошло знаменательное событие: уже через 20 минут после начала торгов стоимость одной акции биотехнологической компании Genentech поднялась с 35 до 89 долларов. Это был рекордный для того времени скачок цен на акции коммерческого предприятия. К моменту закрытия торгов в тот день цена одной акции Genentech составляла 71,25 доллара, а стоимость всех 528 тысяч акций была столь баснословно высока, что мелкие инвесторы, собиравшиеся приобрести небольшой пакет акций, не имели никаких шансов.

По-видимому, это был первый случай в истории, когда о начале великой технологической революции возвестил биржевой колокол. В 1980 г., когда фирма Genentech впервые предложила обществу свои акции, это была небольшая компания в Калифорнии, в течение четырех лет успешно работавшая над проблемой получения рекомбинантных ДНК. За два года до этого ученым компании удалось выделить фрагменты гена (последовательности ДНК), кодирующие человеческий инсулин, и перенести их в генетические элементы (клонирующие векторы), способные реплицироваться в клетках обычной кишечной палочки (Escherichia coli). Эти бактериальные клетки работали как биологические фабрики по производству человеческого инсулина, который после соответствующей очистки мог использоваться как лекарственный препарат для больных диабетом, дающих аллергическую реакцию на свиной инсулин. Еще десять лет назад такое развитие событий представлялось нереальным, но сегодня все это стало вполне привычным.

Головокружительный взлет стоимости акций компании Genentech предопределялся как реальной оценкой потенциала технологии рекомбинантных ДНК, так и мечтами о будущих возможностях. Многие думали, что новая технология станет тем рогом изобилия XX века, который напоит и накормит всех желающих. Эти мечты подпитывались энтузиазмом газетных и журнальных публикаций и телевизионных репортажей, подогревались активностью биржевых брокеров и научно-фантастическими сюжетами. Воображение будоражили полчища удивительных микробов, растения и животные, созданные человеком. Энтузиасты предрекали, что генноинженерные микробы вытеснят химические удобрения, будут уничтожать разливы нефти; появятся растения с передающимися по наследству устойчивостью к вредителям и исключительно высокой питательной ценностью; будут созданы сельскохозяйственные животные, более эффективно усваивающие пищу, быстро прибавляющие в весе и дающие нежирное мясо. Казалось, что коль скоро конкретные биологические свойства обусловливаются одним или несколькими генами (единицами наследственности), создание организмов с новым генетическим устройством не составит труда. И в самом деле, хотя шумиха, поднятая вокруг новой технологии, была не совсем адекватной, увлечение этой идеей имело основания. Прошло немногим более пятнадцати лет, и многие наиболее разумные проекты стали реальностью. В своей книге мы расскажем о том, как это произошло и каковы перспективы применения технологии рекомбинантных ДНК.

16

ГЛАВА 1

Стратегия переноса функциональной единицы наследственности (гена) из одного организма в другой была разработана американскими учеными Стэнли Коэном и Гербертом Бойером в 1973 г. И Коэну, и Бойеру, и многим другим было ясно, что технология рекомбинантных ДНК предоставляет огромные возможности. Как в то время отмечал Коэн, «...есть надежда, что удастся ввести в [бактериальную клетку] E. coli гены, ассоциированные с метаболическими или синтетическими функциями, присущими другим биологическим видам, например гены фотосинтеза или продукции антибиотиков».

Однако одним из первых откликов научного мира на создание новой технологии был мораторий на некоторые биотехнологические эксперименты, считавшиеся потенциально опасными. Запрет на собственные исследования был провозглашен группой молекулярных биологов, включая Коэна и Бойера. Они считали, что объединение генов, происходящих из двух разных организмов, может случайно привести к созданию нового организма с нежелательными и опасными свойствами. Прошло несколько лет, у ученых накопился опыт работы с новой технологией, были согласованы инструкции по обеспечению безопасности этих работ, и страсти постепенно улеглись. Временное прекращение реализации некоторых научных проектов, связанных с рекомбинантными ДНК, не уменьшило энтузиазма генных инженеров. Новая технология продолжает привлекать беспрецедентное внимание как со стороны общественности, так и со стороны ученых.

Весть о клонировании генов, осуществленном Коэном и Бойером, облетела весь мир. Многие исследователи немедленно оценили все преимущества этой стратегии и создали огромное количество методик, следуя которым, можно было с высокой эффективностью и относительно просто идентифицировать, выделять, охарактеризовывать и использовать гены. Эти технологические разработки внесли значительный вклад в развитие практически всех биологических дисциплин, включая науку о поведении животных, биологию развития, молекулярную эволюцию, клеточную биологию и генетику человека, однако наиболее глубокие изменения произошли в области биотехнологии.

Возникновение молекулярной биотехнологии

В начале 70-х годов традиционная биотехнология как научная дисциплина была не слишком известна; исследования в этой области в основном проводились и отделах инженерной химии и иногда в рамках социальных микробиологических программ. В широком смысле биотехнология занимается производством коммерческих продуктов, образуемых микроорганизмами в результате их жизнедеятельности. Более формально биотехнологию можно определить как «применение научных и инженерных принципов к переработке материалов живыми организмами с целью создания товаров и услуг». В историческом смысле биотехнология возникла тогда, когда дрожжи были оперные использованы при производстве пина, а бактерии

— для получения йогурта.

Термин «биотехнология» был придуман в 19J7 г. венгерским инженером Карлом Эреки для описания процесса крупномасштабного выращивания свиней с использованием в качестве корма сахарной свеклы. По определению Эреки, биотехнология — это «все виды работ, при которых из сырьевых материалов с помошью живых организмов производятся те или иные продукты». Однако это совершенно точное определение не получило широкого распространения. Долгое нрсмя термин «биотехнология» относился к двум очень разным дисциплинам. С одной стороны, его употребляли, говоря о промышленной ферментации, с другой — применительно к той области, которая сейчас называется эргономикой. Такой двойственности пришел конец в 1961 г., когда шведский микробиолог Карл Гёрен Хеден порекомендовала изменить название научного журнала "Journal of Microbiological and Biochemical Engineering and Technology" («Журнал микробиологической и химической инженерии и технологии»), специализирующегося на публикации работ по прикладной микробиологии и промышленной ферментации, на "Biotechnology and Bioengineering'' («Биотехнология и биоинженерия»). С этого момента биотехнология оказалась четко и необратимо связана с исследованиями в области «промышленного производства товаров и услуг при участии живых организмов, биологических систем и процессов»

Молекулярно-биотехнологическая революция

17

 

 

 

 

 

 

 

 

 

Рис.

1.1.

Основные

этапы

 

биотехнологического процесса. Термин был

 

введен Карлом Эреки и относился к

 

крупномасштабному

получению

свинины

 

(конечный продукт)

с использованием дешевой

сахарной свеклы (сырье) в качестве корма для свиней (биотрансформация).

и встала на прочный фундамент микробиологии, биохимии и химической инженерии. Промышленный биотехнологический процесс, в котором для производства

коммерческих продуктов используются микроорганизмы, обычно состоит из трех ключевых этапов (рис. 1.1.).

1.Исходная обработка: обработка сырья таким образом, чтобы его можно было использовать как источник питательных веществ для микроорганизма-мишени.

2.Ферментация и биотрансформация; рост микроорганизма-мишени в большом (обычно более 100 л) биореакторе (ферментация) с последующим образованием нужного метаболита, например антибиотика, аминокислоты или белка (биотрансформация).

3.Конечная обработка: очистка нужного вещества от компонентов культуральной среды или от клеточной массы.

Целью биотехнологических исследований является максимальное повышение эффективности каждого из этих этапов и поиск микроорганизмов, с помощью которых можно получить нужные вещества (пищевые добавки, антибиотики и т. д.). В 60—70-е годы все эти исследования касались только исходной обработки, устройства биореакторов и получения конечного продукта. Благодаря этому был усовершенствован инструментальный контроль процесса ферментации и значительно расширены возможности крупномасштабного культивирования, что позволило повысить эффективность производства некоторых продуктов.

Наиболее трудным для оптимизации был этап биотрансформации. Когда использовались природные микробные штаммы, выход конечного продукта часто оказывался намного ниже оптимального. Поэтому предпринимались попытки изменить генетическую конституцию существующих штаммов-продуцентов с помощью химического мутагенеза или ультрафиолетового облучения. При таком подходе уровень повышения продукции обычно лимитировался чисто биологическими факторами. Например, если мутантный штамм синтезировал слишком много того или иного вещества, часто это отрицательно влияло на прочие метаболические процессы и приводило к угнетению роста культуры при крупномасштабном культивировании. Несмотря на это традиционные стратегии «индуцированного мутагенеза и селекции», направленные на усовершенствование штаммапродуцента, были исключительно плодотворны для многих процессов, например для производства антибиотиков.

Традиционные схемы генетического усовершенствования бактерий включают скрининг, отбор и тестирование огромного количества колоний, поэтому такие схемы высокозатратны

изанимают много времени. Более того, при этом можно рассчитывать только на усовершенствование уже существующих, переливаемых по наследству свойств штамма, а не на расширение его генетических возможностей. И все же к концу 70-х годов таким образом были усовершенствованы производственные процессы получения целого ряда продуктов.

I8

ГЛАВА 1

С развитием технологии рекомбинантных ДН К природа биотехнологии изменилась окончательно и бесповоротно. Появилась возможность оптимизировать этап биотрансформации более прямым путем, создавать, а не просто отбирать высокопродуктивные штаммы, использовать микроорганизмы и эукариотические клетки как «биологические фабрики" для производства инсулина, интерферона, гормона роста, вирусных антигенов и множества других белков. Технология рекомбинантных ДНК позволяет получать в больших ко-личествах ценные низкомолекулярные вещества и макромолекулы, которые в естественных условиях синтезируются в минимальных количествах. Растения и животные стали естественными биореакторами, продуцирующими новые или изме-

ненные генные продукты, которые никогда не могли бы быть созданы методами мутагенеза и селекции или скрещивания. Наконец, эта новая технология способствует развитию принципиально новых методов диагностики и лечения различных заболеваний.

На стыке технологии рекомбинантных ДНК и биотехнологии возникла новая область исследований, динамичная и высококонкурентоспособная, - молекулярная биотехнология. Эта молодая дисциплина, как и молекулярная биология в период своего становления, весьма амбициозна, заявляемые ею притязания не всегда соответствуют реальным возможностям. Ее стратегия и экспериментальная база претерпевают быстрое изменение, одни подходы все время вытесня-

Таблица 1.1. История развития молекулярной биотехнологии

Дата Событие

1917

Карл Эреки ввел термин «биотехнология"

 

 

 

1943

Произведен пенициллин в промышленном масштабе

 

 

 

1944

Эвери. МакЛеод и МакКарти показали, что генетический материал представляет собой ДНК

1953

Уотсон и Крик определили структуру молекулы ДНК

 

 

 

1961

Учрежден журнал "Biotechnology and Bioengineering"

 

 

 

1961-

Расшифрован генетический код

 

 

 

 

1966

 

 

 

 

 

 

1970

Выделена первая рестрицирующая эндонуклеаза

 

 

 

1972

Корана и др. синтезировали полноразмерный ген тРНК

 

 

 

1973

Бойери Коэн положили начало технологии рекомбинантных ДНК

 

1975

Колер и Мильштейн описали получение моноклональных антител

 

1976

Изданы первые руководства, регламента руюшие работы с рекомбинантными ДНК

1976

Разработаны методы определения нуклеотндной последовательности ДНК

 

1978

Фирма Genentech выпустила человеческий инсулин, полученный с помощью E. coli

1980

Верховный суд США, слушая дело Даймонд против Чакрабарти, вынес вердикт, что

 

микроорганизмы, полученные генноинженерными методами, могут быть запатентованы

1981

Поступили в продажу первые автоматические синтезаторы ДНК

 

 

1981

Разрешен к применению в США первый диагностический набор моноклональных антител

1982

Разрешена к применению в Европе первая вакцина для животных, полученная по технологии

 

рекомбинантных ДНК

 

 

 

 

1983

Для трансформации растении применены гибридные Ti-плазмиды

 

1988

Выдан патент США на линию мышей с повышенной частотой возникновения опухолей,

 

полученную генноинженерными методами

 

 

 

1988

Создан метод полимеразной цепной реакции (ПЦР)

 

 

 

1990

В США утвержден план испытаний генной терапии с использованием соматических клеток

 

человека

 

 

 

 

 

1990

Официально начаты работы над проектом «Геном человека»

 

 

1994-

Опубликоованы подробные генетические и физические карты хромосом человека

1995

 

 

 

 

 

 

1996

Ежегодный объем продаж первого рекомбинантного белка (эритропоэтина) превысил 1 млрд.

 

долларов

 

 

 

 

 

1996

Определена

нуклеотидная

последовательность

всех

хромосом

эукаристического

 

микроорганизма (Saccharomyces cerevisiae)

 

 

 

1997

Клонировано млекопитающее из дифференцированной соматической клетки

 

 

 

 

 

 

 

 

Mолекулярно-биотехнологическая революция

19

Рис. 1.2. Молекулярная биотехнология использует достижения многих областей науки и позволяет создавать широкий ассортимент коммерческих продуктов и методов.

ются другими. Но несомненно одно: в будущем молекулярная биотехнология станет рутинным методом создания живых систем, обладающих новыми функциями и возможностями.

Очень редко новые научные дисциплины возникают «на пустом месте»; как правило, их фундаментом служат различные области науки. Что касается молекулярной биотехнологии, то ее биотехнологическая составляющая относится к сфере промышленной микробиологии и химической инженерии, а молекулярная — к областям молекулярной биологии, молекулярной генетики бактерий и энзимологии нуклеиновых кислот (табл. 1.1). В широком смысле молекулярная биотехнология пользуется достижениями самых разных областей науки и применяет их для создания самых разных коммерческих продуктов (рис. 1.2).

Коммерциализация молекулярной биотехнологии

Конечной целью всех биотехнологических исследований является создание коммерческого продукта. Следовательно, молекулярная биотехнология тесно связана с экономикой. Конечно, сейчас ее развитие обусловливается не только экономическими факторами, однако на первых порах ажиотаж вокруг этой молодой науки был связан с возможностью получения прибыли. К вечеру 15 октября 1980 г. основные держатели акций фирмы Genentech стали обладателями миллионных состояний, и это побудило очень многих людей к энергичным действиям. В период 1980—1983 гг. в Соединенных Штатах было создано около 200 мелких биотехнологических компаний; этому способствовали введение налоговых льгот, высокие прибыли от операций с ценными бумагами и заинтересованность частных вкладчиков. Вслед за Гербертом Бойером, который вначале был научным сотрудником Калифорнийского университета в Сан-Франциско, а затем стал вицепрезидентом фирмы Genentech, многие университетские профессора открыли собственные компании.

К 1985 г. в Соединенных Штатах было уже более 400 биотехнологических фирм; многие из них включили в свое название слово «ген», чтобы заявить о принадлежности к генноинженерному «цеху»: Biogen, Amgen, Calgene, Engenics, Genex, Cangene. На сегодняшний день в США свыше 1500 биотехнологических компаний, а во

20

ГЛАВА 1

всем мире их более 3000. Кроме того, большой вклад в развитие молекулярной биотехнологии внесли все крупные международные химические и фармацевтические компании, в том числе Monsanto, Du Pont, Upjohn, American Cyanamid, Eli Lilly, SmithKline Beecham, Merck, Novartis, Hoffman-LaRoche. В период бурного развития биотехнологического бизнеса в 80-е годы мелкие компании поглощались крупными, образовывались совместные предприятия. Например, в 1991 г. 60% акций компании Genentech было продано фирме Hoffmann-LaRoche за 2,1 млрд. долларов. В то же время многие компании обанкротились. Такая мобильность — характерная особенность биотехнологической индустрии.

К середине 90-х годов на рынке появилось более десятка новых биотехнологических лекарственных препаратов, более 100 препаратов сейчас проходят клинические испытания, еще свыше 500 находятся на стадии разработки. Создано и выпущено на рынок множество новых молеку-лярно-биотехнологических продуктов, повышающих урожайность сельскохозяйственных культур и продуктивность сельскохозяйственных животных. Ежегодный доход молекулярно-био-технологической индустрии увеличился с 6 млн. долларов в 1986 г. до примерно 30 млрд. в 1996 г. По оценкам, к 2000 г. объем продаж продуктов, изготовленных с применением молекулярной биотехнологии, превысит 60 млрд. долларов в год. И хотя в целом доходность биотехнологического бизнеса оказалась не такой высокой, как ожидалось, энтузиазм инвесторов не ослабевает и свидетельствует о том, что молекулярная биотехнология — по крайней мере по их представлениям — имеет блестящие перспективы.

Все новые независимые молекулярно-био-технологические компании узкоспециализированы, что часто находит отражение в их названии. Например, вслед за компаниями, занимающимися клонированием генов, в США появились компании, выпускающие полученные генноинженерными методами антитела, которые предназначены для лечения инфекционных заболеваний, рака и других болезней человека: Immunex, ImmuLogic, ImmunoGen, Immunomedics, Medlmmune, Immune Response.

Большая часть коммерческих разработок в области молекулярной биотехнологии приходится на Соединенные Штаты. В других странах, где инвестиционный климат не столь благоприятен и бизнес менее активен, главную роль в создании молекулярнобиотехнологических предприятий играют крупные корпорации и государство. Так, правительство Японии объявило биотехнологию «стратегической индустрией» и национальным приоритетом. За дело взялись крупные японские корпорации. Вначале им не хватало собственных кадров, и первые исследования проводились в сотрудничестве с американскими университетами и компаниями. Сейчас эти корпорации приобрели необходимый опыт и сами проводят молекулярно-био-технологические разработки и создают генноинженерные продукты.

Европейская биотехнологическая индустрия тоже неуклонно развивается: к 1995 г. в странах Европы было создано более 600 биотехнологических компаний. В экономически менее развитых странах роль «локомотива» в развитии национальной молекулярнобиотехнологической индустрии взяло на себя государство. Стимулом здесь служила уверенность в том, что молекулярная биотехнология — «самая революционная из всех технологий XX века». Ни одна страна не хотела оказаться лишенной всех тех благ, которые сулило ее развитие.

Сейчас, в конце второго десятилетия своего развития, молекулярная биотехнология фактически стала одной из отраслей промышленности, хотя вначале некоторые ученые считали ее чисто эзотерическим направлением. Без сомнения, в ближайшие десять лет коммерческую молекулярную биотехнологию ожидает бурный рост, но именно поэтому давать какие-то конкретные прогнозы здесь весьма рискованно,

Надежды и опасения

С молекулярной биотехнологией человечество связывают самые большие надежды:

возможность точной диагностики, профилактики и лечения множества инфекционных

игенетических заболеваний

значительное повышение урожайности сельскохозяйственных культур путем создания

Соседние файлы в предмете Биотехнология