Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 курс / Литература / Лекции Введение Физика основа современного естествознания Из истории механики.doc
Скачиваний:
4
Добавлен:
30.06.2023
Размер:
3.03 Mб
Скачать

Лекция 13 «Механические колебания»

План лекции

1. Энергия гармонического осциллятора.

2. Собственные затухающие колебания.

3. Вынужденные колебания. Резонанс. Амплитуда и фаза вынужденных колебаний.

  1. Энергия гармонического осциллятора

Собственные незатухающие колебания возникают в системе при выполнении двух условий: во-первых, при смещении из положения равновесия должна возникать возвращающая сила, пропорциональная смещению (упругая или квазиупругая), и, во-вторых, в системе должны отсутствовать диссипативные силы.

Запустить колебание можно по-разному, но в любом случае эта операция означает сообщение системе некоторого запаса энергии. Далее в процессе колебания эта энергия будет переходить из потенциальной в кинетическую и обратно, но сумма этих энергий в любой момент времени должна быть неизменно равной начальной механической энергии.

Обратимся к конкретному осциллятору — пружинному маятнику (рис. 13.1).

Рис. 13.1

Колебание груза массой m происходит по гармоническому закону:

x = a Cos (t + ). (13.1)

Скорость груза меняется по закону синуса:

. (13.2)

Вычислим механическую энергию маятника в произвольный момент времени t:

Eмех = Ек + U.

Здесь: — кинетическая энергия груза,

U = — потенциальная энергия деформированной пружины.

(13.3)

(13.4)

В последнем выражении мы учли, что , то есть .

Кинетическая и потенциальная энергии осциллятора меняются с частотой, вдвое превышающей частоту колебаний маятника — 0 (рис. 13.2). И та и другая составляющие механической энергии осциллируют во времени. А их сумма?

(!). (13.5)

Их сумма остается неизменной в любой момент времени. Этот результат можно было бы предсказать a priori: ведь в процессе собственных незатухающих колебаний выполняется закон сохранения механической энергии.

Рис. 13.2

Легко видеть, что уравнение (13.5) выражает механическую энергию системы через максимальную кинетическую, когда потенциальная энергия равна нулю. В этот момент груз проходит с максимальной скоростью положение равновесия.

Но эту же механическую энергию можно связать и с максимальной потенциальной энергией — в точке амплитудного отклонения маятника, где v = 0 и Ек = 0.

. (13.6)

Здесь k = , поэтому

.

Максимальная потенциальная энергия (Umax) незатухающего осциллятора равна его максимальной кинетической энергии и обе они равны полной механической энергии (Емех) системы, которая в процессе колебаний остается неизменной.

  1. Собственные затухающие колебания

До сих пор мы рассматривали колебательные процессы в системах, где действовала одна единственная сила — упругая или квазиупругая («как упругая»). Уравнение такого движения записывается просто:

.

Теперь введём в систему ещё одну силу — силу вязкого сопротивления, пропорциональную скорости движения:

.

Здесь r — коэффициент сопротивления. Знак минус означает, что сила сопротивления и скорость всегда направлены противоположно.

Закон движения — второй закон Ньютона — теперь примет такой вид:

.

В стандартном виде его записывают так:

. (13.7)

Это основное уравнение динамики гармонического осциллятора с вязким трением. Решением этого уравнения является гармоническая функция (рис. 13.3):

. (13.8)

Рис. 13.3

Амплитуда колебаний осциллятора с вязким сопротивлением убывает со временем по экспоненциальному закону:

. (13.9)

Здесь  = — коэффициент затухания.

Частота затухающих колебаний  отличается от частоты собственных незатухающих колебаний 0:

.

Вычислим время – , в течение которого амплитуда колебаний уменьшится в e раз (e = 2.718 — основание натурального логарифма). При таком уменьшении амплитуды — почти в 3 раза — условно принято считать, что процесс «затух» и система вернулась к положению равновесия.

.

Отсюда следует, что время релаксации  обратно пропорционально коэффициенту затухания :

(13.10)

Важной характеристикой затухающих колебаний является логарифмический декремент затухания d, равный логарифму отношения амплитуд двух соседних колебаний:

. (13.11)

Численно логарифмический декремент затухания равен произведению коэффициента затухания на период колебаний.

Величина, с точностью до множителя  обратная декременту затухания, называется добротностью осциллятора:

. (13.12)

Подсчитаем число колебаний, которое система совершает за время релаксации .

.

Отсюда следует, что добротность осциллятора с точностью до  равна числу колебаний, за которое амплитуда падает в e раз.

Q = N.

Можно показать, что добротность осциллятора напрямую связана с энергетическими потерями в системе:

. (13.13)

Здесь: Е — энергия осциллятора;

Е — убыль энергии за одно полное колебание (за период).