Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
биохимия.doc
Скачиваний:
350
Добавлен:
14.03.2016
Размер:
2.02 Mб
Скачать

1.Отличительные признаки живой материи.

1. Сложное строение при относительно небольшом количестве биомолекул (белки, жиры, углеводы, липиды, полисахариды, нуклеиновые кислоты)

2. Высокий уровень структурной и функциональной организации биологических объектов со строго определенным назначением каждой составной части живого организма.

3. Способность живого организма поддерживать жизнедеятельность за счет обмена материей и энергией с окружающей средой.

4. Саморегулирование биохимических реакций

5. Самовоспроизводство и передача наследственной информации в каждом виде живых организмов

2.Биомолекулы (простые и сложные); биополимеры. Структурная организация клетки

Простые: α- аминокислоты, мононуклеотиды, моносахариды, липиды, мононуклеопротеиды

Сложные: белки, полисахариды, ДНК,РНК(нуклеиновые кислоты),полионуклеотиды.

Биополимеры-липиды,полисахариды,нуклеиновые кислоты (ДНК,РНК), липиды,белки.

Сахара имеют общую формулу С(Н2О)n, где п — целое число (от 3 до 7), Все сахара содержат гидроксильные, а также либо альдегидные, либо кетонные группировки. Взаимодействуя друг с другом, моносахара могут образовывать ди-, три- или олигосахариды. Сахара являются главным энергетиче­ским субстратом клеток. Кроме того, они образуют связи с белками и липидами, а также являются строительными блоками при образовании более слож­ных биологических структур. Основными реакционноспособными группировками Сахаров являются гидроксильные группы, участвующие, в частности, п образовании связей между мономерами.

Жирные кислоты содержат в своем составе углеводную цепь и гидрофильные карбоксильные группы, образующие амиды и эфиры. Как и углеводы, жирные кислоты являются источником энергии для организма. Но главное их начение связано с участием в образовании клеточных мембран. Свободные жирные кислоты обнаружены на границе раздела фаз липид—вода. Однако в организме чаще всего они этерифицированы или соединены с другими липидными структурами. В организме животных в наибольших количествах нахо-ин гея пальмитиновая, олеиновая и стеариновая жирные кислоты. В растениях, кроме перечисленных, в больших количествах обнаружена также линолевая кислота.

Аминокислоты, находящиеся в биологических тканях, в основном используются для построения белковых макромолекул. Несмотря на различия в хи­мическом строении, они содержат аминную и карбоксильную группы, соединенные с асимметричным атомом углерода. При помощи пептидных связей они образуют длинные полипептидные цепи — составные части белков.

Нуклеотиды трехкомпонентнйсе структуры, состоящие из азотистых оснований и остатка фосфорной кислоты. Азотистые основания, в очередь, делятся па пуриновые и пиримидиновые, а сахар (пентоза) — на рибозу и дезоксирибозу.

Нуклиотиды являются составными частями высоко-полимерных нуклеиновыхкислот - носителей генетической информации

Для определения роли той или иной молекулы в процессах жизнедеятельности необходимо знать все особенности ее строения. Устойчивость молекул обусловлена ковалентными связями между атомами, ее образующими, Биологическая значимость молекул определяется, в частности, их оптической активность, это относится к молекулам, имеющим хиральные центры. Например, у аминокислот, образующих белки, к одному из атомов углерода присоединены четыре различные группы. В результате у аминокислот появляется такое свойство, как оптическая активность, выполняющая важную функциональную роль. Помимо оптической активности, весьма существенным является способность молекул принимать термодинамически наиболее выгодную конформацию. Химические свойства молекул зависят от того, является ли она плоской или имеет иную, например изогнутую, форму.

Нуклеиноые кислоты информационные макромолекулы, состоящие из иононуклеотидов. В клетках содержится дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновые кислоты (РНК). ДНК — самая большая макромолекула В живых системах. Она состоит из многих тысяч пар нуклеотидов, соединениых друг с другом в определенной последовательности. Молекулы РНК по размеру много меньше, чем ДНК, однако их общее количество превышает ДНК. Для нуклеиновых кислот несвойственно многообразие функций, зато хранение и передача генетической информации является основой размножения и функционирования клеток.

Белки обладают множеством функций. Они состоят из аминокислот, соединенных в генетически детерминированной последовательности, которая и определяет как структуру, так и функции данных макромолекул. Таким образом, белки являются тем инструментом, при помощи которого геном управляет всеми реакциями клеточного метаболизма.

Полисахариды — высокомолекулярные вещества, состоящие из повторяющихся структурных единиц. Отличаются друг от друга структурой моносахаридных звеньев, молекулярной массой, а также гликозидных связей. Благодаря наличию большого числа полярных групп, полисахариды после набуха­нии растворяются в воде и образуют коллоидные растворы. Они присутствуют Почти во всех клеткахи выполняют многообразные функции. Велика их роль в образовании биологических структур. Так, хитин образует панцири членистостоногих, целлюлоза является основной структурой зеленых растений, мукополисахариды - важнейшие компоненты соединительной ткани. Гликоген в животных, а крахмал в растительных организмах являются важнейшими резерв­ными полисахаридами. Их делят на гомо- и гетерополисахариды. Примером гомополисахаридов может служить крахмал, состоящий из остатков только одного типа (глюкозы), а примером гетерополисахаридов — гиалуроновая кислота, которая состоит из остатков глюкуроновой кислоты, чередующихся с N- ацетилтлюкозамином.

Липиды - сложные эфиры высших жирных кислот и глицерина. В их состав входят фосфорная кислота, азотистые основания или углеводы. Они играют существенную роль в качестве структурных компонентов клетки, а также как энергетические субстраты Физико-химические свойства липидов зависят от их полярности. Различают полярные и нейтральные липиды. Последние состоят из триацилглицеридов и входя в класс простых липидов. Полярные липиды - многокомпонентные вещества и относятся к сложным липидам.

Структурная организация клетки.

Клетка основной структурный элемент живой материи.

1. Все живые организмы состоят из определенного количества клеток,есть одноклеточные и многоклеточные микроорганизмы.Одноклеточные: стрептококки, холерные палочки и пр.

Многоклеточные:прокариоты (без ядра),эукариоты (с сформировавшимся ядром)

2. Клетка- наименьшая структурная и функциональная единица живой материи

3. Каждая клетка живого организма выполняет строго определенную функцию

Существует два больших класса клеток, отличающихся по строению и функциям. Наиболее древними и простыми по строению являются прокариотические клетки. Основные свойства, характерные для прокариот, можно рассмотреть на примере бактерий. Это одни из наиболее простых по строению клеток, отличающиеся малыми размерами и примитивным строением. Они не имеют ядра, и их генетический материал не защищен дополнительной внутриклеточной мембраной. Как правило, бактерии получают необходимую энергию из окружающей среды, причем глюкоза является основным ее источником. Разновидностью бактерий являются синезеленые водоросли, или цианобактерии, имеющие фотосистему, подобную растительным клеткам. Цианобактерии способны фиксировать азот, углекислый газ и выделять кислород. Таким образом, их нормальная жизнедеятельность может протекать при наличии только воды и воздуха.

Одной из наиболее изученных прокариотических клеток является кишечная палочка Escherichia coli (Е. coli), обитающая в желудочно-кишечном тракте многих животных и человека

Как и все прокариоты, Е. coli имеет клеточную стенку, к которой с внутренней стороны примыкает клеточная мембрана,