Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
биохимия.doc
Скачиваний:
350
Добавлен:
14.03.2016
Размер:
2.02 Mб
Скачать

26.Строение полинуклеотидпой цепи (первичная структура), например, построить фрагмент Ade-Thy-Guo; Cyt-Guo-Thy.

НК-это природные ВМС,построенные из мононуклеотидов,соединенных фосфодиэфирными связями.

n-рибонуклеотид→полирибонукбиомономер РНК

n-дезоксирибонуклеотид→полидезоксирибонуклеотид (ДНК)

n=70÷100 vky/

Первичная структура РНК и ДНК.

Первичная структура у РНК и ДНК одинакова – это линейная полинуклеотидная цепь, в которой нуклеотиды соединены между собой 3/5/ -фосфодиэфирными связями, которые образуют остатки фосфорной кислоты между 3/ углеродным атомом одного нуклеотида и 5/ углеродным атомом следующего нуклеотида.

На одном конце полинуклеотидной цепи всегда есть свободный остаток фосфорной кислоты в 5/ -положении. Этот нуклеотид обозначается как 5/ - концевой и считается началом молекулы нуклеиновой кислоты. На другом конце цепи содержится нуклеотид со свободной 3/ - гидроксильной группой. Это 3/ -концевой нуклеотид – конец молекулы. Никаких разветвлений в молекулах РНК и ДНК не обнаружено.Геном – полное количество ДНК, несущее всю генетическую информацию для данного организма.

27.Вторичная структура днк. Правила Чартгоффа Вторичная структура днк характеризуется правилом э. Чаргаффа (закономерность количественного содержания азотистых оснований):

  1. У ДНК молярные доли пуриновых и пиримидиновых оснований равны:

А+ Г = Ц + Т или (А + Г)/(Ц + Т)=1.

  1. В ДНК количество оснований с аминогруппами (А +Ц) равно количеству оснований с кетогруппами (Г + Т):

А +Ц= Г + Т или (А +Ц)/(Г + Т)= 1

  1. Правило эквивалентности, т.е. А=Т, Г=Ц; А/Т = 1; Г/Ц=1.

  2. Нуклеотидный состав ДНК у организмов различных групп специфичен и характеризуется коэффициентом специфичности:

(Г+Ц)/(А+Т). У высших растений и животных он меньше 1, колеблется незначительно: от 0,54 до 0,98 (АТ-тип ДНК), у микроорганизмов он больше 1 (ГЦ-тип ДНК).

На основании данных рентгеноструктурного анализа и правил Чаргаффа, в 1953 г. Дж. Уотсоном и Ф.Криком предложена модель вторичной структуры ДНК в виде двойной спирали

28.Основные функции т рнк, м рнк, р рнк. Структура и функции рнк.

В отличие от ДНК, молекула РНК состоит из одной полинуклеотидной цепи, которая спирализована сама на себя, т.е. образует всевозможные «петли» и «шпильки» за счет взаимодействий комплементарных азотистых оснований (вторичная структура). У некоторых вирусов встречаются двуцепочечные РНК, которые несут генетическую информацию аналогично ДНК.

Существуют:

1 – матричные РНК (мРНК);

2 – рибосомные РНК (рРНК);

3 – транспортные РНК (тРНК).

Рибосомные РНК. На долю рРНК приходится 80-90% клеточной РНК. Локализованы в рибосомах, в комплексе с рибосомными белками. Рибосомы состоят из двух частей и представляют собой нуклеопротеины, состоящие из рРНК и белка в соотношении 1:1 (для эукариот) и 2:1 (для прокариот).

Биологическая роль рРНК – являются структурной основой рибосом, взаимодействует с мРНК и тРНК в процессе биосинтеза белка, принимает участие в процессе сборки полипептидной цепи.

У эукариот обнаружено 4 типа рРНК с различным коэф. седиментации: 18S(в малой части рибосомы), а 28S, 5,8S и 5S (сведбергов) – в большой части рибосомы.. Они различаются молекулярной массой (35 000-1 600 000) и локализацией в рибосомах.

Вторичная структура рРНК характеризуется спирализацией цепи самой на себя, третичная – ее компактной укладкой.

Матричные РНК. Матричная РНК составляет 2-3% от всей клеточной РНК, синтезируется мРНК в ядре клетки на матрице ДНК (процесс транскрипции), переписывая с нее генетическую информацию по принципу комплементарности.

ДНК -А-Т-Г-Ц-

ДНК -Т-А-Ц-Г-

мРНК -А-У-Г-Ц-

Затем мРНК поступают в цитоплазму, соединяются с рибосомой и выполняют роль матрицы для биосинтеза белка. Каждой аминокислоте соответствует в мРНК определенная тройка (триплет) нуклеотидов, называемая кодоном этой аминокислоты. Последовательность кодонов в цепи мРНК определяет последовательность аминокислот в белке. Всего может быть 64 кодона. Из них 61 кодон кодирует аминокислоты, а 3 кодона – кодоны терминаторы (терминирующие), которые обозначают окончание белкового синтеза. Существуют также инициирующие кодоны, которые соответствуют первой аминокислоте в белке и чаще всего соответствуют аминокислоте метионину.

Поскольку мРНК несет наследственную информацию о первичной структуре белка, нередко ее называют информационной РНК (иРНК). Каждый отдельный белок, синтезируемый в клетке, кодируется определенной «своей» мРНК или ее участком. мРНК образует несколько двуспиральных «шпилек», на концах которых располагаются знаки (например, ААУААА) инициации (начала синтеза белка) и терминации (окончания синтеза белка).

Т.о. информация о строении белка закодирована в ДНК с помощью генетического кода, который является линейным, непрерывным, триплетным, выражденным. Он является универсальным.

Молекулярный вес мРНК варьирует в широких пределах от 35 000 до нескольких млн. мРНК ранее считались короткоживущими РНК. Для микроорганизмов время жизни мРНК несколько секунд или минут. Но для эукариот – оно может составлять от нескольких часов до нескольких недель.

Транспортная РНК. Составляют 10-20% клеточной РНК.

Функции тРНК:

1 - связывают аминокислоты и транспортируют их в рибосому, где происходит синтез белка;

2 – кодируют аминокислоты;

3 – Расшифровывают генетический код.

Содержатся в цитоплазме. Молекулярный вес от 22 000 до 27 000. Всего существует свыше 60 тРНК.

Каждая тРНК может переносить только 1 строго определенную аминокислоту.

тРНК именуются по названию аминокислот. Например, аланиновая тРНК. тРНК, связывающие одну и ту же аминокислоту, называют изоакцепторными и нумеруют: тРНК1вал, тРНК2вал и т.д.

тРНК содержат много минорных нуклеиновых остатков (около 10%). Они обеспечивают защиту тРНК от действия рибонуклеаз (ферментов), специфичность взаимодействия с переносимой аминокислотой и т.д.

Вторичная структура всех тРНК имеет форму «клеверного листа». В его составе различают:

  1. акцепторный стебель – к нему присоединяется аминокислота.

  2. Псевдоуридиловая петля – используется для связи тРНК с рибосомой.

  3. Дополнительная петля – назначение неизвестно.

  4. Антикодоновая петля – содержит антикодон (триплет нуклеиновых остатков, которые комплементарны кодону мРНК, с его помощью тРНК соединяется с мРНК);

  5. Дигидроуридиновая петля – обеспечивает связывание тРНК со специфическим ферментом (аминоацил-тРНК-синтетазой), который соединяет аминокислоту с тРНК .

Стабилизируется вторичная структура водородными связями между комплементарными основаниями.

Третичная структура тРНК имеет неправильную Г-образную форму. стабилизирована водородными и др. связями.