Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Нейрохирургия

.pdf
Скачиваний:
268
Добавлен:
15.03.2015
Размер:
13.95 Mб
Скачать

Рис.

2.41. Схема кровоснабжения спинного мозга.

А - Артерии спинного мозга: 1 - задняя спинномозговая артерия; 2 - передняя спинномозговая артерия; 3 - корешковая артерия; 4 - водораздел; 5 - позвоночная артерия; 6 - восходящая шейная артерия; 7 - водораздел; 8 - дуга аорты; 9 - грудная межреберная артерия; 10 - аорта; 11 - водораздел; 12 - артерия Адамкевича; 13поясничная артерия. Б - Вены спинного мозга: 14 - позвоночная вена; 15 - глубокая шейная вена; 16 - спинномозговая вена; 17 - корешковая вена; 18 - нижняя яремная вена; 19 - подключичная вена; 20 - правая брахиоцефальная вена; 21 - левая брахиоцефальная вена; 22 - добавочная полунепарная вена; 23 - непарная вена; 24 - полунепарная вена В - Поперечный распил позвоночника и срез спинного мозга; кровоснабжение: 25 -

ветвь спинномозгового нерва; 26 - передний корешок; 27 - эпидуральное пространство; 28 - сосудистая корона; 29 - передние спинномозговые артерия и вена; 30 - задние спинномозговые артерии; 31 - задняя спинномозговая вена; 32 - передняя корешковая вена; 33 - заднее наружное позвоночное венозное сплетение; 34 - мягкая мозговая оболочка; 35 - спинномозговой нерв; 36 - спинномозговой ганглий мируют мелкую сосудистую сеть, анастомозирующую с радиальными сосудами

белого вещества. Наиболее разветвленная сеть сосудов располагается вокруг центрального спинального канала и в области анастомозов.

Венозная кровь по интрамедуллярным сосудам собирается в более крупные коллекторы, которые на поверхности спинного мозга образуют несколько продольных спинномозговых вен. Из перимедуллярной венозной сети кровь оттекает по передним и задним корешковым венам, которые прободают твердую

мозговую оболочку и впадают во внутреннее позвоночное венозное сплетение или в межпозвоночные вены. Далее кровь проходит в наружное венозное сплетение позвоночника, которое соединяется с системой верхней и нижней полых вен.

2.7. Внутричерепные объемные взаимоотношения и их нарушения Мозг заключен в полость черепа, объем которой не изменяется. Ткань мозга

составляет 80% содержимого черепа; примерно 10% - цереброспинальная жидкость и приблизительно такой же объем занимает кровь. Благодаря сложным механизмам, определяющим взаимоотношения объемных компонентов, внутричерепное давление достаточно стабильно. В норме оно равно 150-180 мл вод.ст. (по данным измерения давления люмбальной цереброспинальной жидкости

вположении лежа, которое косвенно отражает уровень внутричерепного давления). Многие заболевания мозга сопровождаются формированием дополнительных объемов. Это опухоли, кровоизлияния (гематомы), абсцессы, паразитарные кисты (эхинококк) и пр. Кроме того, при различных заболеваниях может увеличиваться объем самого мозга, прежде всего вследствие отека. В других случаях может значительно возрастать объем цереброспинальной жидкости вследствие увеличения ее продукции, нарушения всасывания или оттока из вентрикулярной системы при окклюзии ее разных отделов, обусловленной опухолью, сгустком крови, поствоспалительными спайками. Появление дополнительного объема в полости черепа влияет на объемные взаимоотношения между мозгом, кровью, цереброспинальной жидкостью может привести к повышению внутричерепного давления. Такое повышение наступает не сразу, поскольку включаются компенсаторные механизмы, способные до определенного момента сохранять давление в полости черепа неизменным. В первую очередь происходит вытеснение венозной крови из синусов. До определенного

момента это не приводит к повышению венозного давления и не сказывается на мозговом кровотоке. Затем уменьшается содержание цереброспинальной жидкости

вполости черепа: она начинает вытесняться из желудочков и субарахноидального пространства. Субарахноидальные щели по ходу извилин мозга запустевают, желудочки сдавливаются, становятся щелевидными. Наконец, происходит уменьшение объема самого мозга, сначала в результате уменьшения содержания межклеточной жидкости, а затем из-за атрофии мозговой ткани.

В связи с упомянутыми компенсаторными механизмами даже при больших объемных процессах может не наблюдаться признаков повышения внутричерепного давления. Это обычно бывает при медленно развивающихся доброкачественных опухолях, которые могут достигать очень больших размеров, вызывая лишь минимальные клинические симптомы. Напротив, быстро развивающиеся объемные процессы (спонтанные кровоизлияния в мозг, травматические гематомы) и при меньших размерах могут приводить к резкому повышению внутричерепного давления. Следует отметить, что у младенцев, у которых череп продолжает увеличиваться, возможности компенсации несравненно больше, чем у взрослых. Вследствие этого многие объемные процессы у детей, особенно опухоли, часто достигают гигантских размеров без признаков внутричерепной гипертензии.

Когда механизмы компенсации внутричерепных объемных взаимоотношений исчерпаны, начинает повышаться внутричерепное давление: повышаются вентрикулярное давление цереброспинальной жидкости, давление интерстициальной жидкости и люмбальное цереброспинальное давление. В результате повышения давления в полости черепа возникают затруднения венозного оттока. Кровь начинает скапливаться в венах и синусах мозга, что, в свою очередь, приводит к еще большей внутричерепной гипертензии. Формируется порочный круг. Если активно не вмешаться в этот процесс, то он становится необратимым и больной умирает.

При высоком внутричерепном давлении нарушается кровообращение в мозге. Как известно, мозговой кровоток остается стабильным при существенных колебаниях артериального давления в связи с включением механизмов саморегуляции. Эти механизмы важны также для поддержания мозгового кровообращения в нормальных пределах и при повышении внутричерепного давления до определенного уровня.

Кровоток в мозге, обеспечивающий его нормальный метаболизм, определяется перфузионным давлением, т.е. градиентом между средним артериальным и венозным давлением. Естественно, что при повышении венозного

давления при внутричерепных объемных процессах перфузионное давление начинает снижаться. До определенного предела это не сказывается на кровоснабжении мозговой ткани в результате включения механизмов саморегуляции и расширения сосудов. Однако если перфузионное давление снижается до критических цифр (ниже 50 мм рт.ст.), эти механизмы уже не в состоянии обеспечить достаточное кровоснабжение мозга - возникают ишемия и отек. Если внутричерепное давление достигает цифр, равных его давлению в артериях или превышающих его, кровоток в мозге полностью прекращается. Влияние повышенного внутричерепного давления на кровообращение в мозге проявляется в первую очередь затруднением венозного оттока из полости черепа, что сопровождается рядом клинических симптомов. Распирающая головная боль прогрессивно нарастает, особенно усиливается в горизонтальном положении и может сопровождаться многократной рвотой. Эти симптомы могут сочетаться с заторможенностью, снижением умственной работоспособности, прогрессирующим нарушением высших психических функций. На стадии выраженной внутричерепной гипертензии, когда развивается слепота вследствие атрофии зрительных нервов, головная боль может уменьшаться или даже полностью прекращаться.

Часто выявляются застойные явления на глазном дне. Венозная система зрительного нерва и глаза связаны с венозным кровообращением головного мозга, поскольку отток по глазничной вене осуществляется через расположенный в черепе пещеристый (кавернозный) синус. Застойные явления на глазном дне могут сопровождаться кровоизлияниями в сетчатку, при длительной внутричерепной гипертензии может развиваться так называемая вторичная атрофия зрительного нерва, проявляющаяся побледнением его диска, запустеванием сосудов.

При формировании застойных явлений на глазном дне больные жалуются на затуманивание зрения, нечеткость видения («пелена перед глазами»). Развитие вторичной атрофии зрительного нерва сопровождается стойким снижением зрения, которое без своевременной медицинской помощи неуклонно прогрессирует до полной слепоты.

Длительное и стойкое повышение внутричерепного давления вызывает изменения в структуре черепа. К таким изменениям относятся порозность и укорочение спинки турецкого седла, углубление его дна, изменение структуры передних наклоненных отростков. Значительные изменения происходят во внутренней пластинке черепа: она неравномерно истончается, извилины мозга как бы отпечатываются на ней. При

рентгенологическом исследовании выявляется типичная картина изменений костей свода черепа: отпечатки на его внутренней поверхности похожи на пальцевые вдавления. Одновременно отмечается значительное расширение диплоических каналов, обусловленное повышением венозного давления.

При ангиографическом исследовании можно выявить замедление мозгового кровотока с поздним заполнением вен и синусов. Если в норме контрастное вещество исчезает из вен мозга через 6 с после его поступления во внутреннюю сонную артерию, то при выраженной внутричерепной гипертензии время

продвижения контрастного вещества по сосудистому руслу может увеличиваться в

1,5-2 раза.

Дислокация и вклинение головного мозга При анализе патогенеза поражений головного мозга, и в первую очередь тех,

которые приводят к увеличению его объема, необходимо учитывать, что интракраниальное пространство разделено наметом мозжечка на две части: большую, располагающуюся супратенториально, и меньшую - субтенториальную часть. В свою очередь, оба полушария большого мозга, занимающие супратенториальное пространство, разделяются серпом большого мозга (серповидным отростком). Наиболее значимые для поддержания жизненно важных функций структуры ствола мозга располагаются в отверстиях: средний мозг - в тенториальном и продолговатый - в затылочном. Головной мозг обладает определенной подвижностью, и при увеличении объема одной из его частей (вследствие опухоли, гематомы, увеличения объема желудочков и пр.) возникают силы, смещающие мозг. Равномерному смещению головного мозга препятствуют структуры твердой мозговой оболочки - серповидный отросток и намет мозжечка. Наибольшее смещение, естественно, претерпевают структуры мозга, не фиксируемые ими, что создает условия для компрессии мозгового вещества (вклинение). Различают аксиальную дислокацию (в переднезаднем направлении) и латеральное смещение.

Аксиальная дислокация возникает при расположении объемного процесса в передних отделах мозга вблизи средней линии. Средний мозг и прилежащие к нему диэнцефальные структуры смещаются в каудальном направлении и могут ущемиться в тенториальном отверстии. В щель между краем тенториальной вырезки и стволом мозга вклинивается медиальный отдел височной доли (парагиппокампальная извилина и крючок).

Патологические процессы в задней черепной ямке (например, опухоли мозжечка) могут вызывать смещение в направлении тенториального или затылочного отверстия. В первом случае в тенториальное отверстие смещаются верхние отделы червя мозжечка, что может привести к сдавлению среднего мозга. При каудальной дислокации миндалины мозжечка опускаются вниз, в большое затылочное отверстие, и сдавливают продолговатый мозг.

При латеральной дислокации поясная извилина смещается под серповидный отросток.

Вклинение головного мозга приводит к очень опасным, часто смертельным осложнениям. При вклинении начинают сдавливаться в первую очередь вены, что приводит к увеличению объема и ущемлению вклинившихся структур. На этом фоне нередко возникают точечные или ламинарные кровоизлияния в стволе мозге. В наиболее тяжелых случаях при тенториальном вклинении могут сдавливаться артерии с развитием ишемического инфаркта затылочной доли и мозгового ствола. Ущемление мозга в тенториальном или большом затылочном отверстии приводит к нарушению ликвороциркуляции. Вклинение в тенториальное отверстие вызывает сдавление водопровода мозга. Вклинение в затылочное отверстие нарушает отток цереброспинальной жидкости из IV желудочка. Развиваются окклюзионная гидроцефалия, быстрое увеличение объема желудочков, что усиливает явления дислокации, замыкая порочный круг.

Клинически вклинение головного мозга в тенториальное отверстие проявляется тем, что на фоне усиления головной боли, нарастания оглушенности и сонливости появляются симптомы поражения четверохолмия - ограничение взора вверх, парез конвергенции, асимметрия зрачков, ослабление их реакции на свет; может наблюдаться вертикальный нистагм. К этим симптомам присоединяются признаки децеребрации, экстензорные тонические судороги, нарушение дыхания. Одним из

начальных проявлений латерального смещения становится дисфункция одноименного глазодвигательного нерва (расширение зрачка, ограничение подвижности глазного яблока, опущение века). Вклинение миндалин мозжечка в большое затылочное отверстие и сдавление продолговатого мозга вызывают резкую головную боль с иррадиацией в затылок, ригидность затылочных мышц, вынужденное положение головы. Возможны затруднения глотания, икота. Далее присоединяются нарушения ритма и глубины дыхания, брадикардия, угнетение сознания.

КТ и МРТ позволяют выявлять дислокацию мозга и его ущемление в большом затылочном и тенториальном отверстиях, острую окклюзионную гидроцефалию вследствие блокады путей оттока цереброспинальной жидкости. Распознавание признаков вклинения в ранних стадиях имеет жизненно важное

значение и требует срочных нейрохирургических мер (дренирование желудочков, удаление гематомы или опухоли, пункция абсцесса и пр.). В поздних стадиях вклинения поражение ствола мозга становится необратимым. Устранение причин, вызвавших дислокацию мозга, уже не может существенно повлиять на состояние больного.

ГЛАВА 3. ЧУВСТВИТЕЛЬНОСТЬ И ЕЕ НАРУШЕНИЯ

Чувствительность - способность организма воспринимать раздражения, исходящие из окружающей среды или от собственных тканей и органов. Учение И.П. Павлова об анализаторах заложило основы понимания природы и механизмов чувствительности. Каждый анализатор состоит из периферического (рецепторного) отдела, проводниковой части и коркового отдела.

Рецепторы - специализированные чувствительные образования, способные воспринимать изменения внутри или вне организма и преобразовывать их в нервные импульсы. Рецепторы представляют собой периферические окончания афферентных нервных волокон, являющихся периферическими отростками псевдоуниполярных нейронов спинномозговых (спинальных) ганглиев. Благодаря специализации рецепторов осуществляется первый этап анализа внешних раздражителей - разложение целого на части, дифференциация характера и качества сигналов. Все виды внешних воздействий (сенсорные стимулы) трансформируются в нервные импульсы, поступающие в ЦНС. Трансформация сенсорного стимула в нервный импульс может происходить путем прямой активации ионных каналов рецепторов (как в случае слухового - звукового раздражения) или путем непрямой активации посредством внутриклеточной системы вторичных мессенджеров (как в случае зрительного раздражения). Во всех случаях нервный импульс проводится в виде потенциала действия, распространяющегося по нервным волокнам от клетки к клетке.

Чувствительность имеет специфичность, или модальность, которая определяется прежде всего специализированными структурами, принимающими дифференцированную афферентную информацию (рецепторы). В зависимости от функциональных особенностей рецепторы подразделяются на экстерорецепторы (находятся в кожных покровах и информируют о происходящем в окружающей среде), телерецепторы (органы зрения и слуха), проприорецепторы (обеспечивают информацию о напряжении мышц и сухожилий, движениях и положении частей тела) и интерорецепторы («сообщающие» о состоянии внутри организма). Имеются также осмо-, хемо-, барорецепторы и др.

Кожные рецепторы можно классифицировать в соответствии с типом стимула, на который они отвечают, на механорецепторы (реагиру-

ющие на прикосновение, давление), терморецепторы (реагирующие на холод, тепло) и ноцицептивные, или болевые, рецепторы (реагирующие на боль). Этих рецепторов много в коже, особенно между эпидермисом и тканью, поэтому кожа может рассматриваться как чувствительный орган, т.е. вся поверхность тела. Механорецепторы реагируют на тактильные стимулы (прикосновение к коже, давление) и бывают быстро или медленно адаптирующимися. Быстро адаптирующимися являются рецепторы волосяных фолликулов, тельца Мейсснера (расположены в коже, лишенной волосяного покрова) и тельца Пачини подкожной ткани (рис. 3.1). Рецепторы волосяных фолликулов и тельца Мейсснера отвечают на стимулы, поступающие с частотой 30-40 Гц, тогда как тельца Пачини - на стимулы с частотой 250 Гц. К медленно адаптирующимся кожным механорецепторам относятся диски Меркеля, имеющие точечные рецептивные поля, и тельца Руффини, активизирующиеся при растяжении кожи. Все эти рецепторы имеют миелинизированные аксоны, принадлежащие к группе волокон Аβ, за исключением рецепторов волосяных фолликулов, снабженных волокнами Λδ. Существуют механорецепторы (группа С) с немиелинизированными аксонами, которые реагируют на медленно двигающиеся стимулы (поглаживание).

Рис.

3.1. Классификация рецепторов по скорости их адаптации и характеристикам соответствующих им рецепторных полей. (А). Распределение рецепторов, расположенных в коже, лишенной волосяного покрова.(Б). 1 - тельца Пачини; 2 - тельца Руффини; 3 - диски Меркеля; 4 - тельца Мейсснера; 5 - эпидермис; 6 - периферический нерв; 7 - дерма Терморецепторы чувствительны к температурному воздействию. Выделяют

холодовые и тепловые терморецепторы. Как правило, они относятся к адаптирующимся рецепторам, но могут отвечать и фазическим (кратковременным высокочастотным) разрядом на быстрые изменения температуры. В отличие от других рецепторов терморецепторы обладают спонтанной импульсацией в нормальных физиологических условиях и проявляют активность в широком диапазоне температур. При умеренной температуре кожи (примерно 35 °С) активны как холодовые, так и тепловые рецепторы, генерирующие высокочастотные импульсные залпы, позволяющие ЦНС получить дифференцированную информацию о колебаниях активности рецепторов, подвергающихся воздействию повышенных или пониженных температур. При согревании кожи до температуры выше 37 °С импульсация от холодовых рецепторов прекращается, при охлаждении кожи ниже 35 °С прекращается импульсация от тепловых рецепторов, при этом активируется еще один класс холодовых рецепторов - высокопороговые. Важно отметить, что при повышении температуры выше 45 °С, т.е. при достижении болевого (повреждающего) уровня, терморецепторы утрачивают активность и не сигнализируют организму об опасности развития ожога и боли. При снижении

температуры кожи до определенного уровня. Большинство холодовых рецепторов снабжается волокнами Аδ, а большинство тепловых рецепторов - волокнами С. Болевые рецепторы (ноцицепторы) реагируют на угрожающие организму стимулы (рис. 3.2). Существуют два основных типа кожных ноцицепторов: Аδмеханоноцицепторы и полимодальные С-ноцицепторы. Механоноцицепторы иннервируются тонкими миелинизированными, а полимодальные С-ноцицепторы - немиелинизированными С-волокнами. Аδ-ме-

Рис.

3.2. Схема работы ноцицептивной системы.

1 - нисходящий путь в составе заднебокового канатика; 2 - толстые миелинизированные афферентные волокна; 3 - Аб/С волокна; 4 - воспаление; 5 - высвобождение цитокинов; 6 - активация тучной клетки; 7 - высвобождение гистамина; 8 - Аб/С волокна; 9 - субстанция Р; 10 - симпатическая иннервация кожи и кровеносных сосудов; 11расширение сосудов и отек; 12 - механическое повреждение; 13 - высвобождение брадикинина, простагландинов ханоноцицепторы отвечают на сильное механическое раздражение кожи, например укол иглой или щипок пинцетом. Обычно они не реагируют на термические и болевые стимулы, если не были предварительно сенситизированы. Полимодальные С-ноцицепторы реагируют на болевые стимулы разного вида - механические, термические и химические.

Повышение чувствительности афферентных волокон ноцицепторов называется их сенситизацией. Как правило, сенситизация наступает после ответа рецепторов на повреждающий стимул. Сенситизированные ноцицепторы интенсивнее реагируют на повторный стимул и вызывают более сильную боль в ответ на стимул той же интенсивности в результате снижения болевого порога. Ноцицепторы способны генерировать фоновый разряд, что сопровождается появлением спонтанной боли. К сенситизации приводят

повреждение или воспаление тканей вблизи от болевых нервных окончаний, которое сопровождается высвобождением тканевых (гистамин, серотонин, простагландины, лейкотриены, ионы К+ и пр.) альгогенов и действием циркулирующих медиаторов отека и воспаления (брадикинин, каллидин) (см. рис.

3.2). При активации ноцицептора из немиелинизированных С- афферентов могут высвобождаться регуляторные пептиды (субстанция Р, нейрокинин А, белок, кодируемый геном кальцитонина) (рис. 3.3). Образующийся при этом нервный импульс, помимо ортодромного, может иметь и антидромное распространение (аксон-рефлекс), в результате чего в ткани высвобождаются регуляторные нейропептиды, увеличивающие тканевую проницаемость и способствующие повышению локальной концентрации альгогенов. Эти пептиды вызывают расширение сосудов и повышение

Рис.

3.3. Механизм сенситизации нервных ноцицептивных окончаний.(А). 1 - нервное окончание; 2 - сенситизация; 3 - синтез брадикинина; 4 - взаимодействие с γ- глобулинами крови; 5 - выход протеолитических ферментов; 6 - повреждение. Гибель клетки.

Схема аксон-рефлекса. (Б). 7 - ноцицептивное афферентное волокно (группа IV); 8 - кожа; 9 - нервный импульс; 10 - нервное окончание; 11 - вещество; 12 - кровеносный сосуд; 13 - вазодилатация, усиление кровотока, увеличение проницаемости проницаемости капилляров, таким образом усиливая действие других веществ, которые выходят из поврежденных клеток, а также из тромбоцитов, тучных клеток и лейкоцитов, мигрирующих в патологический очаг. Развивающееся в итоге воспаление сопровождается покраснением и повышением температуры вследствие усиленного кровотока, отеком, болью и повышенной чувствительностью, обусловленной сенситизацией ноцицепторов.

Рецепторы мышц, суставов и внутренних органов. Ноцицепторы реагируют при надавливании на мышцу, при высвобождении некоторых метаболитов, особенно во время ишемии. Ноцицепторы мышц иннервируются аксонами среднего диаметра и тонкими миелинизированными аксонами (группы II и III) или немиелинизированными афферентами (группа IV). Рецепторы еще одной группы, снабжаемые тонкими афферентными волокнами, классифицируются как эргорецепторы, поскольку они создают ощущение работы мышц.

Скелетные мышцы содержат рецепторы нескольких типов (механорецепторы, ноцицепторы, реже термо- и хеморецепторы). Наиболее важную роль играют рецепторы растяжения мышц, к которым относятся мышечные веретена и сухожильные тельца Гольджи-Маццони. Эти рецепторы необходимы для восприятия позы тела (проприоцепции). Кроме того, они играют важную роль в регуляции движений.

Мышечные веретена присутствуют в большинстве скелетных мышц, особенно в большом количестве в мышцах, требующих тонкой регуляции движений (например, в мелких мышцах кисти), и в крупных мышцах, содержащих медленные фазические волокна (волокна типа I). Диаметр мышечного веретена равен примерно 100 мкм, длина - до 10 мм. Мышечное веретено состоит из пучка модифицированных мышечных волокон, иннервируемых сенсорными и двигательными аксонами (рис. 3.4). Зона иннервации мышечного веретена заключена в соединительнотканную капсулу. Мышечное веретено свободно располагается в мышце, ориентируясь параллельно мышечным волокнам. Его дистальный конец прикреплен к соединительнотканной сети внутри мышцы - эндомизию.

Мышечное веретено содержит модифицированные мышечные волокна, называемые интрафузальными, в отличие от обычных - экстрафузальных. Интрафузальные волокна гораздо тоньше, чем экстрафузальные, и слишком слабы, чтобы участвовать в сокращении мышцы. Различают два типа интрафузальных мышечных волокон: с ядерной сумкой и с ядерной цепочкой (рис. 3.5). Волокна с ядерной сумкой крупнее, чем волокна с ядерной цепочкой, и их ядра плотно упакованы в средней части волокна, тогда как в волокнах с ядерной цепочкой все ядра расположены в один ряд.

Рис.

3.4. Схема мышечного веретена.

1 - сухожильный орган Гольджи; 2 - капсула; 3 - соединительная капсула; 4 - мышечное веретено; 5 - первичное чувствительное окончание (волокна Iа типа); 6 - вторичное чувствительное окончание (волокна

II типа); 7 - 7-эфферентное двигательное волокно; 8 - α-эфферентное двигательное волокно к экстрафузальным мышечным волокнам; 9 - экстрафузальные мышечные волокна; 10 - интрафузальные мышечные волокна; 11 - чувствительное волокно; 12 - сухожилие Сенсорная иннервация мышечных веретен осуществляется одним афферентным

аксоном группы Ia и несколькими афферентными аксонами группы II (см. рис. 3.5). Афференты Ia являются сенсорными аксонами наибольшего диаметра со скоростью проведения от 72 до 120 м/с; они образуют первичное окончание, спирально обвивая каждое интрафузальное волокно. Первичные окончания располагаются на интрафузальных волокнах обоих типов (с ядерной сумкой и с