Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
bilety.docx
Скачиваний:
32
Добавлен:
12.03.2022
Размер:
5.18 Mб
Скачать

4. Перед операцией под общим обезболиванием больному в числе так называемых премедикационных средств вводят атропин, являющийся Мхолиноблокатором.

Вопрос 1. С какой целью это делается?

Вопрос 2. Какие сопутствующие физиологические эффекты могут при этом наблюдаться?

Вопрос 3. Может ли при этом измениться сократительная функция скелетной мускулатуры?

1. Атропин, блокируя М-холинорецепторы в постганглионарных синапсах блуждающего нерва, тем самым выключает его эфферентные влияния на деятельность различных органов и отделов желудочно-кишечного тракта, устраняя тем самым нежелательные рефлекторные реакции: например, усиление перистальтики и секреции желудка, кишечника.

2. При этом может наблюдаться увеличении ЧСС, сухость во рту и расширение зрачков.

3. Скелетная мускулатура при этом остается интактной, так как там нет М-холинорецепторов.

Билет 11 1.Мембрана клетки, ее строение и функции. Понятие об ионных каналах и насосах, классификации ионных каналов.

Строение и функции клеточных мембран.

1. Барьерная функция выражается в том, что мембрана при помощи соответствующих механизмов участвует в создании концентрационных градиентов, препятствуя свободной диффузии.

2. Регуляторная функция клеточной мембраны заключается в тонкой регуляции внутриклеточного содержимого и внутриклеточных реакций за счет рецепции внеклеточных биологически активных веществ.

3. Преобразование внешних стимулов неэлектрической природы в электрические сигналы (в рецепторах).

4. Высвобождение нейромедиаторов в синаптических окончаниях.

Толщина клеточных мембран (6—12 нм). Мембрана представлена бислоем фосфолипидных молекул, ориентированных таким образом, что гидрофобные концы молекул находятся внутри бислоя, а гидрофильные направлены в водную фазу.

Ионные каналы - особые образования в мембране клетки, представляющие собой олигомерные (состоящие из нескольких субъединиц) белки. Центральным образованием канала является молекула белка, которая пронизывает мембрану таким образом, что в ее гидрофильном центре формируется канал-пора, через которую в клетку способны проникать соединения, диаметр которых не превышает диаметра поры (обычно- это ионы).

Вокруг главной субъединицы канала располагается система из нескольких субъединиц, которые формируют участки для взаимодействия с мембранными регуляторными белками, различными медиаторами, а также фармакологически активными веществами.

Классификация ионных каналов по их функциям:

1) по количеству ионов, для которых канал проницаем, каналы делят на

-селективные (проницаемы только для одного вида ионов)

-неселективные (проницаемы для нескольких видов ионов);

2) по характеру ионов, которые они пропускают на

-Na+,

-Ca++,

- Cl-,

-K+-каналы;

3) по механизму открывания делятся на

- потенциалзависимые( открываются при определенном уровне МП)

-хемозависимые (открытие при воздействии на хеморецепторы мембраны физиологически активных веществ(гормоны,нейромедиаторы))

-механозависимые ( открытие ворот происходит при деформации мембраны при действии механического раздражителя ).

4) по скорости перемещения ионов – быстрые и медленные 2. Функциональное строение коры больших полушарий головного мозга. Локализация функций в коре больших полушарий, особенности двигательного и сенсорного представительства.

Кора головного мозга состоит из шести слоев:

  1. Молекулярный слой, самый верхний. Образован множеством восходящих дендритов пирамидных нейронов. Тел нейронов в нем мало. Этот слой пронизывают аксоны неспецифических ядер таламуса, относящихся к ретикулярной формации. За счет такой структуры слой обеспечивает активацию всей коры.

  2. Наружный зернистый слой. Формируется плотно расположенными мелкими нейронами, имеющими многочисленные синаптические контакты между собой. Благодаря этому наблюдается длительная циркуляция нервных импульсов. Это является одним из механизмов памяти.

  3. Наружный пирамидный слой. Состоит из мелких пирамидных клеток. С помощью их и клеток второго слоя происходит образование межкортикальных связей, т.е. связей между различными областями коры.

  4. Внутренний зернистый слой. Содержит звездчатые клетки, на которых образуют синапсы аксоны переключающих и ассоциативных нейронов таламуса. Сюда поступает вся информация от периферических рецепторов.

  5. Внутренний пирамидный слой. Образован крупными пирамидными нейронами, аксоны которых образуют нисходящие пирамидные пути, направляющиеся в продолговатый и спинной мозг.

  6. Слой полиморфных клеток. Аксоны его нейронов идут к таламусу.

Представительство проприорецепторов мышц и сухожилий, т.е. моторная кора занимает переднюю центральную извилину. Импульсы от проприорецепторов нижних конечностей идут к верхней части извилины. От мышц туловища к средней части. От мускулатуры головы и шеи к ее нижней части. Наибольшую площадь этого поля также занимает представительство мускулатуры губ, языка, кистей и лица.

Импульсы от рецепторов глаза поступают в затылочные области коры около шпорной борозды. Поражение первичных полей приводит к корковой слепоте, а вторичных и третичных - потере зрительной памяти.

Слуховая область коры расположена в верхней височной извилине и поперечной извилине Гешля. При поражении первичных полей зоны развивается корковая глухота. Периферических - трудности в различении звуков.. При его патологических изменениях теряется способность к пониманию речи.