Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_na_voprosy_po_meditsinskoy_himii.doc
Скачиваний:
41
Добавлен:
25.12.2018
Размер:
865.28 Кб
Скачать

Вопрос 16 Метаболизм углеводов и липидов. Примеры превращения лекарственных средств в процессе метаболизма в более биологически активные соединения.

Синтез липидов из углеводов. Если количество углеводов, поглощенных с пищей за один прием, больше того, какое может быть запасено в виде гликогена, то избыток углеводов превращается в жиры. Начальная последовательность реакций совпадает при этом с обычным окислительным путем, т.е. сначала из глюкозы образуется ацетил-КоА, но далее этот ацетил-КоА используется в цитоплазме клетки для синтеза длинноцепочечных жирных кислот. Процесс синтеза можно описать как обращение обычного процесса окисления жирных клеток. Затем жирные кислоты запасаются в виде нейтральных жиров (триглицеридов), отлагающихся в разных частях тела. Когда требуется энергия, нейтральные жиры подвергаются гидролизу и жирные кислоты поступают в кровь. Здесь они адсорбируются молекулами плазменных белков (альбуминов и глобулинов) и затем поглощаются клетками самых разных типов. Механизмов, способных осуществлять синтез глюкозы из жирных кислот, у животных нет, но у растений такие механизмы имеются. Метаболизм липидов. Липиды попадают в организм главным образом в форме триглицеридов жирных кислот. В кишечнике под действием ферментов поджелудочной железы они подвергаются гидролизу, продукты которого всасываются клетками стенки кишечника. Здесь из них вновь синтезируются нейтральные жиры, которые через лимфатическую систему поступают в кровь и либо транспортируются в печень, либо отлагаются в жировой ткани. Выше уже указывалось, что жирные кислоты могут также синтезироваться заново из углеводных предшественников. Следует отметить, что, хотя в клетках млекопитающих может происходить включение одной двойной связи в молекулы длинноцепочечных жирных кислот (между С-9 и С-10), включать вторую и третью двойную связь эти клетки неспособны. Поскольку жирные кислоты с двумя и тремя двойными связями играют важную роль в метаболизме млекопитающих, они в сущности являются витаминами. Поэтому линолевую (C18:2) и линоленовую (C18:3) кислоты называют незаменимыми жирными кислотами. В то же время в клетках млекопитающих в линоленовую кислоту может включаться четвертая двойная связь и путем удлинения углеродной цепи может образоваться арахидоновая кислота (C20:4), также необходимый участник метаболических процессов. В процессе синтеза липидов остатки жирных кислот, связанные с коферментом А (ацил-КоА), переносятся на глицерофосфат - эфир фосфорной кислоты и глицерина. В результате образуется фосфатидная кислота - соединение, в котором одна гидроксильная группа глицерина этерифицирована фосфорной кислотой, а две группы - жирными кислотами. При образовании нейтральных жиров фосфорная кислота удаляется путем гидролиза, и ее место занимает третья жирная кислота в результате реакции с ацил-КоА. Кофермент А образуется из пантотеновой кислоты (одного из витаминов). В его молекуле имеется сульфгидрильная (- SH) группа, способная реагировать с кислотами с образованием тиоэфиров. При образовании фосфолипидов фосфатидная кислота реагирует непосредственно с активированным производным одного из азотистых оснований, таких, как холин, этаноламин или серин. За исключением витамина D, все встречающиеся в организме животных стероиды (производные сложных спиртов) легко синтезируются самим организмом. Сюда относятся холестерин (холестерол), желчные кислоты, мужские и женские половые гормоны и гормоны надпочечников. В каждом случае исходным материалом для синтеза служит ацетил-КоА: из ацетильных групп путем многократно повторяющейся конденсации строится углеродный скелет синтезируемого соединения.

Вопрос 17 Фармакодинамика. Определение понятия «рецептор». Химические связи, участвующие во взаимодействии «лекарство-рецептор». Локализация рецепторов. Фармакодинамика описывает механизмы действия лекарственных средств. После того как лекарства попадают в организм (через рот, кожу, а также с внутримышечной или внутривенной инъекцией), большинство из них поступает в кровоток, распределяется и взаимодействует с органами или тканями-мишенями. Однако в зависимости от свойств или способа введения препарат может действовать только в определенной части тела (например, влияние лекарств, снижающих кислотность желудочного сока, в значительной степени ограничено желудком). Взаимодействие с органом-мишенью обычно оказывает желаемый терапевтический эффект, в то время как взаимодействие с другими клетками, тканями или органами может приводить к развитию побочных реакций.

Селективность действия

Некоторые лекарства не отличаются большой селективностью (избирательностью) действия и влияют на различные ткани и органы. Например, атропин, назначаемый для расслабления мускулатуры желудочно-кишечного тракта, может снижать тонус мышц глаз и дыхательных путей, а также уменьшать потоотделение и секрецию слюнных желез. Другие лекарства высокоселективны и воздействуют главным образом на один орган или систему. Например, дигитоксин, который прописывают людям с сердечной недостаточностью, действует прежде всего на сердце, усиливая его насосную функцию. Снотворные препараты влияют на определенные нервные клетки мозга. Избирательность действия нестероидных противовоспалительных средств, к примеру аспирина и ибупрофена, относительна, потому что они оказывают эффект в любом месте, где идет воспалительный процесс.

Откуда лекарство «знает», где именно надо действовать? Ответ будет понятен, если объяснить, каким образом оно взаимодействует с клетками и различными веществами, например ферментами.

Рецепторы

Многие лекарственные препараты взаимодействуют (связываются) с клетками посредством рецепторов, находящихся на их поверхности. Большинство клеток имеет целый набор поверхностных рецепторов, с помощью которых разнообразные химические вещества, находящиеся вне клетки (в частности, лекарства и гормоны), влияют на ее функции. Ре­цептор имеет определенную конфигурацию, позволяющую присоединиться к нему только тому лекарству, которое соответствует ей, как ключ замку. Селективность действия лекарственного средства объясняется тем, что оно связывается лишь с определенными рецепторами. Некоторые препараты присоединяются только к одному типу рецепторов, а другие — подобно мастер-ключу — к нескольким.

Природа, создавая рецепторы, конечно же, «не рассчитывала», что когда-нибудь к ним будут присоединяться лекарственные средства. Каждый тип рецепторов имеет свое физиологическое предназначение в организме, но благодаря их существованию возможно применение лекарств. Например, морфин и близкие к нему по действию обезболивающие препараты присоединяются к тем же самым рецепторам в головном мозге, что и эндорфины (естественные химические вещества, вырабатываемые самим организмом и изменяющие восприятие нервных импульсов).

Лекарства, называемые агонистами, связываясь с определенным типом рецепторов, активируют их и, соответственно, усиливают или ослабляют ту или иную функцию клетки. Например, агонист карбахол, присоединяясь к холинергическим рецепторам дыхательных ­путей, вызывает сокращение гладких мышц и сужение бронхов. Другой агонист, фенотерол, присоединяясь к адренергическим рецепторам дыхательных путей, вызывает рас­слабление гладких мышц, приводящее к расширению бронхов.

Лекарства, называемые антагонистами, препятствуют связыванию агонистов с их рецепторами. Антагонисты используют, чтобы блокировать или уменьшить реакцию клеток на присутствующие в организме агонисты определенных рецепторов (обычно нейромедиаторы). Например, антагонист холинергических рецепторов атровент устраняет бронхоконстрикторный эффект (сужение дыхательных путей) нейромедиатора ацетилхолина — естественного передатчика холинергических нервных импульсов.

Агонисты и антагонисты применяют как различные, но дополняющие друг друга средства для лечения бронхиальной астмы. Агонист адренергических рецепторов фенотерол, который ослабляет тонус гладких мышц бронхов, можно использовать вместе с антагонистом холинергических рецепторов атровентом, который блокирует бронхоконстрикторный эффект ацетилхолина. Эти вещества входят в состав комбинированного препарата «Беродуал».

К широко используемым антагонистам относятся бета-адреноблокаторы, например пропранолол. Эти антагонисты уменьшают реакцию сердечно-сосудистой системы на гормоны стресса адреналин и норадреналин. Их назначают для снижения высокого артериального давления, лечения стенокардии и некоторых нарушений сердечного ритма. Антагонисты наиболее эффективны, когда содержание агониста в каком-либо месте резко увеличивается. Так, бета-адрено­блокаторы в дозах, которые незначительно влияют на нормальную функцию сердца, защищают его от внезапных колебаний концентрации гормонов стресса.

Ферменты

Помимо клеточных рецепторов лекарства взаимодействуют с ферментами, которые помогают транспортировать жизненно важные вещества, регулируют скорость химических реакций или выполняют другие транспортные, регулирующие и структурные функции. В то время как препараты, воздействующие на рецепторы, называют агонистами и антагонистами, лекарства, влияющие на ферменты, называют ингибиторами (подавляющими действие) и индукторами. Например, ловастатин (мевакор), используемый для лечения людей с высокой концентрацией холестерина в крови, ингибирует фермент ГМГ-КоА-редуктазу, которая играет основную роль в образовании холестерина в организме.

Большинство взаимодействий между лекарствами и рецепторами или лекарствами и ферментами обратимы, так как через некоторое время препарат подвергается химическому превращению (метаболизму), и рецептор или фермент ­начинают работать, как обычно. Иногда взаимодействие ­необратимо, и эффект препарата сохраняется до тех пор, пока в ор­ганизме не образуется новая порция фермента. В качестве примера можно назвать омепразол (омез, лосек), который ­ингибирует фермент, участвующий в секреции кислоты желудком.

Аффинитет и внутренняя активность

Для действия лекарства важны два качества: аффинитет и внутренняя активность. Аффинитет — это сродство и прочность соединения между лекарством и объектом его действия, будь то рецептор или фермент. Внутренняя активность — мера способности лекарства производить фармакологическое действие после связывания с рецептором.

Лекарства, которые активируют рецепторы (агонисты), имеют оба свойства: они прочно связываются (проявляют аффинитет) со своими рецепторами, а комплекс «рецептор–лекарство» вызывает желаемый ответ в соответствующей системе (имеет внутреннюю активность). Напротив, препараты, блокирующие рецепторы (антагонисты), связываются с ними прочно, но или имеют малую внутреннюю активность, или она совсем отсутствует, и их роль состоит в предотвращении взаимодействия молекул агониста с их рецепторами.

Активность и эффективность

Активность (сила действия) обозначает количество лекарства (обычно выражаемое в миллиграммах), необходимое для достижения его эффекта, например облегчения боли или снижения артериального давления. Если 5 мг лекарства В уменьшают боль так же хорошо, как 10 мг лекарства А, то лекарство В вдвое активнее лекарства A. Большая активность не всегда означает, что одно лекарство лучше другого. При сравнении различных лекарств врачи рассматривают много факторов, в частности их побочные эффекты, потенциальную токсичность, продолжительность действия (и, следовательно, кратность ежедневного приема) и стоимость.

Эффективность обозначает, каков максимально воз­можный терапевтический ответ на действие лекарства. Например, мочегонное средство фуросемид приводит к зна­чительно большему выведению воды и солей с мочой, чем гипо­тиазид. Таким образом, фуросемид имеет бо«льшую эф­фективность, чем гипотиазид. Подобно активности, эффективность — только один из факторов, которые принимают во внимание врачи при выборе наиболее подходящего лекарства для конкретного пациента.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]