Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы математики и ее приложения в экономическом образовании_Красс М.С., Чупрынов Б.П_2001 -688с.doc
Скачиваний:
1373
Добавлен:
23.03.2016
Размер:
12.97 Mб
Скачать

18.4. Непрерывные случайные величины Функция распределения и ее свойства

Пусть Х — непрерывная случайная величина (см. опреде­ление 3 п. 18.1), значения которой сплошь заполняют интервал (а, b). Теперь уже нельзя составить перечень всех возможных значений X, как это было сделано в случае дискретной случай­ной величины. Тем не менее существует способ задания любых видов случайных величин. Пусть х — действительное число. Обозначим вероятность события того, что Х примет значение, меньшее x, через F(x).

Определение 1. Функцией распределения случайной величи­ны Х называется функция F(x), определяющая вероятность того, что Х примет значение, меньшее х:

Геометрический смысл приведенного определения: F(x) — это вероятность того, что случайная величина Х примет зна­чение, изображаемое точкой на числовой оси левее точки х. По виду функции F(x) определяется и вид случайной величины. Уточним понятие непрерывной случайной величины.

Определение 2. Случайная величина называется непрерыв­ной, если ее функция распределения есть непрерывная кусочно-дифференцируемая функция с непрерывной производной.

Таким образом, дискретную случайную величину можно считать кусочно-непрерывной.

Функция распределения обладает рядом фундаментальных свойств, указанных ниже.

Свойство 1. Область значений функции распределения ле­жит на отрезке [0,1]:

Свойство 2. Функция распределения является неубываю­щей, т.е.

Свойство 3. Если возможные значения случайной вели­чины находятся на интервале (а, b), то F(x) = 0 при ха и F(x) = 1 при хb.

Из указанных свойств вытекают важные следствия.

1. Вероятность того, что случайная величина Х принимает значения, заключенные внутри интервала (α, β), равна разнос­ти значений функции распределения на концах этого интервала:

2. Вероятность того, что непрерывная случайная величина Х примет одно определенное значение, равна нулю.

3. Если возможные значения непрерывной случайной вели­чины Х расположены на всей числовой оси, то

График функции распределения непрерывной случайной ве­личины показан на рис. 18.2.

Пример 1. Найти функцию распределения процентного изме­нения стоимости акций по данным примера 3 п. 18.1 и постро­ить ее график.

Решение. Перепишем таблицу распределения дискретной случайной величины в порядке возрастания ее возможных зна­чений:

Если х ≤ 5, то F(x) = 0. Если 5 < х ≤ 10, то F(x) = 0,1. На интервале 10 < х ≤ 15 применяем теорему сложения вероят­ностей, так как события Х < 10 и 10 < Х ≤ 15 несовместны: F(x) = 0,1 + 0,1 = 0,2. Аналогично определяются значения F(x) на других интервалах: при 15 < х ≤ 20 F(x) = 0,4; при 20 < х ≤ 25 F(x) = 0,7; при 25 < х ≤ 30 F(x) = 0,9; при х > 30 имеем достоверное событие (все случаи изменения сто­имости акций исчерпаны), т.е. F(x) = 1. Таким образом, иско­мая функция распределения имеет следующую аналитическую форму записи:

График этой функции распределения показан на рис. 18.3.

Плотность распределения вероятностей и ее свойства

Определение 3. Производная от функции распределения не­прерывной случайной величины Х называется плотностью рас­пределения вероятностей X:

Из этого определения следует, что функция распределения является первообразной для плотности распределения или не­определенным интегралом от нее. Плотность распределения — это "скорость" изменения вероятности Р(Х < х). Из свойства 2 функции распределения следует справедливость следующей фундаментальной теоремы.

ТЕОРЕМА 5. Вероятность того, что непрерывная случай­ная величина Х примет значение на интервале [α, β), опре­деляется по формуле

Вспоминая геометрический смысл определенного интеграла (см. п. 7.5), можно сказать, что вероятность того, что непрерывная случайная величина Х примет значение, при­надлежащее интервалу (α, β), равна площади криволинейной трапеции, ограниченной сверху кривой плотности распределе­ния f(x), снизу — осью Ох, а с краев — вертикальными пря­мыми х = α и х = β (рис. 18.4).

Связь между функцией распределения и плотностью рас­пределения вероятностей устанавливается, согласно (18.32), формулой

Пример 2. Случайная величина Х задана функцией распре­деления

Найти плотность распределения X.

Решение. Функция F(x) является кусочно-дифференциру­емой. Согласно формуле (18.32), дифференцируя F(x) по ин­тервалам ее задания, получаем

Пример 3. Непрерывная случайная величина Х задана плот­ностью распределения на всей числовой оси:

Найти вероятность того, что Х примет значение на интервале (-1, 1).

Решение. Согласно формуле (18.33), искомая вероятность равна

Плотность распределения обладает рядом свойств, основ­ные из них указаны ниже.

Свойство 1. Плотность распределения является неотри­цательной функцией:

Это следует из характера функции распределения: она являет­ся неубывающей, и, значит, ее производная неотрицательна.

Свойство 2. Несобственный интеграл от плотности рас­пределения в пределах интегрирования по всей числовой оси равен единице:

Это равенство означает достоверность события, что случай­ная величина Х примет значение, принадлежащее интервалу (-,), т.е. вероятность этого событияР(-<Х < ) = 1.

Так, если все возможные значения случайной величины Х лежат внутри интервала (а, b), то