Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вопросы к зачету 1 семестр.docx
Скачиваний:
14
Добавлен:
10.02.2022
Размер:
165.11 Кб
Скачать

3) Уравнение прямой в пространстве, проходящей через две точки:

(см. подробно н стр. 70)

4)Общее уравнение прямой (см. §10.2 стр. 69)

Общее уравнение прямой в пространстве:

28. Формула нахождения угла между прямой и плоскостью в пространстве, условия их параллельности и перпендикулярности. (Вопрос такой же как 24)

Угол между двумя прямыми и условия параллельности и перпендикулярности двух прямых: tg = (см. подробно §10.3 стр. 73)

Допустим, мы имеем 2 (канонических) уравнения прямых, а также их направляющие векторы 1 и 2. Тогда угол между 2 прямыми можно найти по формуле: cos =

Для нахождения острого угла между прямыми L1 и L2 числитель правой части формулы следует взять по модулю.

Если прямые L1 и L2 перпендикулярны, то в этом и только в этом случае имеем cos =0. следовательно, числитель дроби = 0, т.е. =0.

Если прямые L1 и L2 параллельны, то параллельны их направляющие векторы S1 и S2. следовательно, координаты этих векторов пропорциональны: .

29. Уравнения кривых второго порядка.

Общим уравнением второго порядка называется уравнение вида:

Ax2+2Bxy+Cy2+2Dx+2Ey+F=0

где коэффициенты A,B,C одновременно не равны нулю. Линии, определяемые такими уравнениями, называются кривыми второго порядка. Центром некоторой линии называется такая точка плоскости, по отношению к которой точки этой линии расположены симметрично парами. Линии второго порядка, обладающие единственным центром, называются центральными. Координаты центра S(x0 ; y0) линии определяются из системы:

Эллипс.

Геометрическое место точек, сумма расстояний от которых до двух фиксированных точек плоскости (обычно называемых фокусных) постоянна, называется эллипсом.

Если оси координат расположены так, что Ox проходит через фокусы F1(C,0) и F2(-C,0), а О(0,0) совпадает с серед отрезка F1F2, то по F1М+F2M получаем:

каноническое уравнение эллипса ,

b2=-(с2-a2).

а и b- полуоси эллипса., а-большая, b-меньшая.

Эксцентриситет. , (если а>b)

(если а<b)

Эксцентриситет характеризует выпуклость эллипса.

У эллипса эксцентриситет находится: 0 .

Случай =0 возникает только тогда, когда с=0, а это есть случай окружности – это эллипс с нулевым эксцентриситетом.

Директрисы (D) Геометрическое место точек, отношение расстояний от которых до точки эллипса к расстоянию от этой точки эллипса до фокуса постоянно и равно величине , называется директрисами. .

Примечание: у окружности нет директрисы.

Гипербола.

Геометрическое место точек, модуль разности расстояний от которых до двух фиксированных точек плоскости постоянна, называется гиперболой.

Каноническое уравнение гиперболы: , где .

Гипербола есть линия второго порядка.

Гипербола имеет 2 асимптоты: и

Гипербола называется равносторонней, если ее полуоси равны. (а=b). Каноническое уравнение:

Эксцентриситет – отношение расстояния между фокусами к величине действительной оси гиперболы:

Так как для гиперболы с>а , то эксцентриситет гиперболы >1.

Эксцентриситет характеризует форму гиперболы: . Эксцентриситет равносторонней гиперболы равен равен .

Директрисы – прямые .

Фокальные радиусы: и .

Есть гиперболы, которые имеют общие асимптоты. Такие гиперболы называются сопряженными.

Парабола – множество всех точек плоскости, каждая из которых одинаково удалена от данной точки, называемой фокусом, и данной прямой, называемой директрисой.

Расстояние от фокуса до директрисы – параметр параболы (p>0) - полуфокальный диаметр.

Парабола есть линия второго порядка.

Каноническое уравнение параболы: y2 = 2px.