Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физоснов_пособие.doc
Скачиваний:
9
Добавлен:
20.09.2019
Размер:
1.07 Mб
Скачать

4.3. Описание физических полей

Как было указано выше, под физическим полем понимается особое состояние пространства вокруг вещества, проявляющееся в создании силового воздействия на качественно подобное вещество, в любой точке этого пространства.

В соответствии с данным определением можно говорить о поле скоростей движущегося газа (например, ветра на разных высотах), поле температур (при передаче тепла от какого-либо объекта), поле электрических или магнитных сил, поле притяжения материальных тел независимо от их природы (поле тяготения).

Физические поля существуют в трехмерном пространстве и изменяются во времени. Следовательно, их описание должно даваться функцией (или функциями) от трех координат (в декартовой системе) и времени. Анализ подобных выражений оказывается крайне сложным. Поэтому, по возможности, выражения упрощают, рассматривая различные частные случаи.

С точки зрения зависимости от времени, поля разделяют на статические, не зависящие от времени; стационарные, параметры которых изменяются во времени периодически по известным зависимостям и нестационарные, изменяющиеся во времени без периодического повторения значений поля в отдельных точках пространства. Проще всего рассматривать статические и стационарные поля, и мы начнем рассмотрение именно с них.

С точки зрения пространственного воздействия на физические объекты, поля делятся на скалярные и векторные.

Скалярное поле - это поле, параметр которого в каждой точке пространства задается одним числом. Например, распределение (поле) температуры металлического бруска, нагреваемого с одного конца. В каждой точке бруска температура своя, но ее значение зависит только от координаты рассматриваемой точки и времени нагрева t, и не зависит от какого – то выделенного направления. Поэтому, выбрав некоторую систему координат, температуру Т в любой точке бруска можно представить как функцию координат (x,y,z) и времени t: Т = f(x,y,z,t).

Предположим, скалярное поле стационарно, т.е. значения температур в каждой точке бруска остаются неизменными во времени. Тогда можно соединить мысленно все точки равной температуры, они образуют поверхность равных температур. В каждой точке указанной поверхности можно указать направление, по которому температура нарастает быстрее всего. Еще раз подчеркнем, что речь идет не о повышении температуры во времени, а о росте (или спаде) ее в пространстве, при переходе от точки к точке. Указанное направление быстрейшего роста или спада скалярного поля называется градиентом (в уравнениях пишут или grad T или используют специальный знак ΔT).

Градиент, как характеристика скорости пространственного нарастания поля, включает в себя производные по координатам, а как характеристика направления является вектором. Окончательно – градиент функции T(x,y,z) есть вектор, проекциями которого на координатные оси служат значения частных производных этой функции. В литературе принято обозначать направления координатных осей x, y, z единичными векторами, т.е. стрелками, направленными по соответствующим координатным осям и длиной в одну единицу; эти единичные вектора обозначаются соответственно буквами i, j, k. В указанных стандартных обозначениях градиент температурного поля запишется так:

(4.8)

Предполагается, что читатель знаком с действиями над векторами, в частности, что сумма векторов есть вектор, полученный по правилу параллелограмма, а разность двух векторов есть вектор, направленный от конца одного к концу другого.

Векторное поле – это поле, воздействие которого на физические объекты в каждой точке пространства задается величиной и направлением действия. Для описания векторного поля используют два метода:

- графический, когда значение поля в каждой точке пространства изображают в виде стрелки (вектора), направление которой показывает направление действия поля в данной точке, а длина в условных единицах равна величине (модулю) поля в этой точке;

- аналитический, в котором вектор обозначается либо в виде выделенной жирным шрифтом буквы (например, сила F), либо в виде буквы, умноженной на вектор единичной длины. Например, выражение для импульса частицы: p = mּνּn, где p – вектор импульса; m – масса частицы; v – модуль скорости частицы; n – единичный вектор скорости, т.е. вектор, модуль которого равен единице, а направление совпадает с направлением скорости частицы.

Для полного уяснения правил изображения векторных полей, рассмотрим точки на поверхности диска, вращающегося с постоянной угловой скоростью (см. рис. 4.1).

Рис. 4.1. Векторные поля вращающегося диска

Выделим на поверхности диска некую точку А и проведем к ней из центра круга О радиус r, который не только определяет минимальное расстояние от центра О до точки А, но и указывает в системе координат, связанной с диском, направление на точку А.Очевидно, что r – вектор (имеет длину и определенное направление).

Относительно системы координат, не связанной с диском, видно, что радиус – вектор r вращается с постоянной периодичностью вокруг точки О, образуя стационарное векторное поле. Другими словами: все точки на радиусе – векторе r, описав угол 2π за время Δt, возвращаются в исходное состояние; интервал времени Δt называется периодом вращения. Угол, на который поворачивается за единицу времени вектор r, называется угловой скоростью вращения ω. Отношение угла к интервалу времени ω=2π/Δt является, конечно, скаляром, но необходимо каким – то образом указать, что вращение происходит не хаотично в трехмерном пространстве, а в определенной плоскости (в нашем случае – это плоская поверхность диска). Плоскость, согласно аналитической геометрии, задается перпендикуляром единичной длины к ней, который обозначен на рис. 4.1 буквой n. Окончательно имеем: все точки диска, вращающегося с постоянным периодом Δt, образуют поле постоянной угловой скорости ω = ωּn, причем, по договоренности, вектор ω направлен так, чтобы, глядя с его конца на диск, видно было перемещение радиуса – вектора r против движения часовой стрелки.

Каждая точка диска, кроме угловой скорости ω, имеет и линейную скорость v, которую легко вычислить: за время одного периода Δt точка на диске проходит путь 2πr, следовательно, v=2πr/Δt. Поскольку ω=2π/Δt, линейную скорость можно записать через угловую:

v= ω·r. (4.9)

Но диск вращается и в системе координат, не связанной с диском, точка А непрерывно меняет свое положение. Поэтому возникает вопрос: а куда же направлен вектор скорости? Он направлен, как легко доказать, по касательной к окружности. Сама же касательная перпендикулярна радиусу r в точке касания и лежит в плоскости диска, то есть, перпендикулярна вектору угловой скорости ω. Если вектор (в частности, скорости v) перпендикулярен плоскости, в которой лежат два других вектора (ω и r), то знаком × (векторное умножение) обозначают операцию получения вектора, перпендикулярного плоскости, в которой лежат перемножаемые вектора, а модуль нового вектора равен произведению модулей исходных векторов на синус угла между ними. В рассматриваемом случае можно, следовательно, записать вектор линейной скорости, с учетом выражения (4.9), в виде

v = ω ×r. (4.10)

Таким образом, на вращающемся диске точки образуют поле линейных скоростей, направленных по касательной к окружности вращения в каждой точке и величиной (модулем), пропорциональной расстоянию от центра вращения до соответствующей точки.

Непрерывное изменение направления линейной скорости v вращающейся точки А приводит к появлению центростремительного ускорения а, равного по модулю а = v2/r и направленного по радиусу – вектору r. По второму закону Ньютона, произведение массы материальной точки m на ускорение (вектор) создает силу, направленную по направлению ускорения. На рис. 4.1 в формуле силы задание направления достигается умножением произведения массы m и модуля ускорения v2/r на вектор r. Но вектор r может быть любой длины, поэтому умножение на него не только указывает направление действия силы, но изменяет и ее модуль. Чтобы указать направление силы F и исключить влияние длины вектора r, одновременно с умножением на него выражение делиться на длину вектора r, что дает в итоге

. (4.11)

Мы рассмотрели поле скоростей и сил неподвижных материальных точек на вращающемся диске. А что будет, если по поверхности вращающегося диска материальная точка массой m движется с постоянной линейной скоростью vр вдоль радиуса – вектора r? Как показано в курсах теоретической механики, в этом случае на точку действует сила, лежащая в плоскости вращения (т.е. перпендикулярная вектору угловой скорости ω) и перпендикулярная вектору vр. Сила эта по имени описавшего ее ученого называется кориолисовой силой Fk и в векторной форме равна:

Fk = 2 m vр ×ω. (4.12)

Векторные поля можно, конечно, описать с помощью введения трехмерной системы координат, как это сделано для скалярного поля. Однако, подобное представление не слишком удобно: во–первых, результаты вычислений оказываются зависимыми от выбранных направлений осей координат; во–вторых, одному векторному уравнению соответствует три уравнения разложения вектора по координатным осям, что усложняет решение задач. Поэтому обычно задача формулируется в векторной форме, далее переходят к разложению векторов по координатным осям, но направление осей подбирают так, чтобы задача имела простое решение (например, одну из осей направляют по неизменному направлению поля), а окончательный результат решения вновь обобщают в векторной форме.