Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
математика и информатика курс лекций.pdf
Скачиваний:
182
Добавлен:
26.07.2016
Размер:
500.27 Кб
Скачать

М = {1, 2, 3}, N = {1, 2, 4, 6, 9}, K = {4, 6, 9}.

Найти:

1) M N; 2) M K; 3) N К; 4) M K; 5) N М; 6) K N.

Часть 2. Случайные события и операции над ними. Теоремы сложения и умножения вероятностей событий. Аксиомы теории вероятностей

Глава 1. Основные формулы комбинаторики

Введение

Встречаются задачи, которые имеют несколько различных вариантов решений. Чтобы выбрать правильный из них, надо перебрать все возможные варианты. Задачи, требующие такого решения, называют комбинаторными. Раздел математики, в котором исследуются различные задачи на перебор, называется комбинаторикой.

Комбинаторика – это раздел математики, в котором для конечных множеств рассматриваются различные соединения элементов: перестановки, размещения, сочетания. В задачах, связанных с выборкой элементов множества, необходимо подсчитать количество различных комбинаций этих элементов. В теории вероятностей приходится подсчитывать общее число исходов эксперимента и число благоприятных исходов. Такой подсчет сводится к перебору возможных вариантов.

1.1. Перестановки

Задачи, связанные с перестановками, относятся к задачам комбинаторики. Например, перестановка книг на полках. В таких задачах подсчитывается количество возможных вариантов перестановок, причем в каждой комбинации должны присутствовать все объекты строго по одному разу.

Определение 1: Перестановками называют комбинации, состоящие из одних и тех же n – различных элементов и отличающиеся только порядком их расположения.

Рn = n! = 1 2 3 … n.

(1.1)

где: Рn – количество перестановок;

n! = 1 · 2 · 3· … · (n - 1) · n – произведение всех натуральных чисел от 1 до n включительно есть «n-факториал».

Пример. Сколько трехзначных чисел можно составить из трех цифр: 3, 5, 7, с учётом использования каждой цифры строго по одному разу?

Решение. Количество трехзначных чисел в данном примере определяется по формуле перестановок (1.1) и равно: Р3=1 2 3=6.

1.2. Размещения

Если в выборках из n объектов по m объектов порядок их следования по условию задачи имеет значения, то имеют дело с «задачей о рассаживании»: группу из n человек следует рассадить в аудитории за каждым столом по m-человек (m<n). Число способов рассаживания определяется числом размещений.

12