Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Все лекции по гидрологии.docx
Скачиваний:
4
Добавлен:
28.02.2024
Размер:
7.04 Mб
Скачать

Тема 8. Минимальный расход воды.

Минимальные расходы воды относятся к разряду основных гидрологических характеристик, используемых при строительном проектировании водозаборов, величиной наименьших расходов определяется и наименьшая мощность, которую может развить гидроэлектростанция особенно в маловодный ряд лет.

Минимальный сток наступает в межень летом (при отсутствии дождей) и зимой (при наступлении продолжительных периодов с сильным понижением температур воздуха) или зимой и летом в связи с многолетним истощением грунтовых вод.

Минимальный сток зависит от характера и остаточной емкостью наземных и подземных аккумуляторов влаги (подземных озер, наземных озер, болот, морей, характера почво-грунтов регионов). При вырубке лесов, или их выгорании модуль минимального стока резко снижается, а при возведении емких водохранилище, прудов модуль минимального стока повышается.

Хотя минимальный сток рек зависит от многих факторов – климат, рельеф, гидрологические условия, почвенно-растительный покров, хозяйственная деятельность человека, но все же наблюдается зональность распределения стока, наблюдается зависимость минимального стока от глубины залегания и запасов грунтовых вод.

Используя эту закономерность, построены карты распределения нормы минимального стока для средних и больших бассейнов. Наиболее освещены территории Европейской части страны, где по картам Л.Н.Попова средний минимальный сток колеблется от0-0,5 л/сек с 1 км2 на юге ЕТС до 2-2,5 л/сек с 1 км2 на севере.

Карты применимы для расчетов норм минимальных средних месячных летних и зимних модулей стока средних и больших рек площадью более 2000 км2.

Точность определяется по картам %. Самые же низкие расходы воды в реках приурочены к зимнему времени, что связано с истощением запасов подземных вод, а также с уменьшением или прекращением притока воды в русла рек в результате промерзания верхнего слоя почво-грунтов.

Расчет минимального стока при наличии гидрометрических наблюдений.

Определение стока маловодных лет и минимальных расходов весьма важно как при использовании рек в естественном состоянии так и при регулировании рек для ряда отраслей водного хозяйства-гидроэнергетики, судоходства, водоснабжения и орошения.

Для определения минимальных расходов воды рек используются данные наблюдений по стоку за зимний и летне-осенний сезоны. При этом под летне-осенним сезоном понимается период от конца весеннего половодья до начала ледовых явлении на реках рассматриваемой территории; за зимний сезон принимается период от начала появления ледовых явлений на реках до начала весеннего половодья. В случае отсутствия ледовых явлений за зимний сезон принимается период от средней даты устойчивого перехода температуры воздуха через 0° в сторону понижения до начала весеннего половодья.

Основной расчетной характеристикой является минимальный средний месячный расход воды, наблюдающийся в меженный период зимнего или летне-осеннего сезона. В случае если меженный период является коротким (меньшим двух месяцев) или прерывистым (состоит из нескольких периодов, разделенных паводками), вместо среднего месячного расхода воды используется средний расход воды за 30 суток с наименьшим стоком (не календарный месяц).

Он определяется следующим образом: строятся гидрографы стока исследуемой реки за каждый год за весь период наблюдений (необходимость такого построения определяется сложностью режима стока реки, что устанавливается путем анализа таблиц ежедневных расходов воды); на гидрографе определяется участок с наименьшими расходами воды в данном сезоне продолжительностью 30 суток и по таблицам ежедневных расходов воды производится подсчет среднего расхода воды за выбранный период.

В случае если для рек данного района характерно наличие длительного меженного периода, прерываемого только в многоводные годы значительными паводками, т.е. когда меженный период является коротким, вместо 30-дневного периода в такие годы используется и более короткий период, но не менее 25-23 суток, чтобы исключить влияние паводков. Если длительные беспаводочные периоды наблюдаются редко, в расчет вводится величина минимального стока, определенная за 23-30 суток с наименьшим стоком. Такой режим характерен для рек с коротким и неустойчивым меженным периодом. Длительность периода минимального стока определяется величиной паводков, предшествующих периоду наименьшего стока и следующих за ним.

Средний за период наблюдений минимальный расход воды определяется как среднее арифметическое из имеющегося ряда фактических данных о стоке. При этом в случае определения минимального 30-дневного расхода воды средняя величина рассчитывается независимо от того, имеются в ряду наблюдений только 30-дневные величины или с сокращенным периодом — 25-23-дневные. Средняя многолетняя величина минимального стока считается достаточно надежной, если ее средняя квадратическая ошибка σn, определяемая по формуле , составляет не более ±15%. Если значение σn превышает допустимую величину, необходимо удлинить ряд наблюдений методом аналогии. При выборе реки-аналога используются гидрогеологические описания и карты изучаемого района, а также карты районов для определения минимального стока на малых реках. При отсутствии аналога расчет производится по методу определения минимального стока на реках с отсутствием гидрометрических наблюдений.

Наиболее обоснованными являются карты Л. Н. Попова (рис 8.1 и 8.2), составленные им для среднемесячных минимальных летних и зимних модулей стока. Картами можно пользоваться при предварительных расчетах для площадей бассейнов более 2000 км2. Средняя ошибка при определении минимального стока, по мнению автора, равна ±12,0-14%. При сложных геологических условиях эта ошибка может оказаться значительно большей.

При достаточном ряде наблюдений можно составить кривые обеспеченности. Для пересыхающих рек М. Э. Шевелев рекомендует принимать Cs min =0 (для рек южной полосы и рек малых бассейнов), а для бассейнов, покрытых растительностью, Cs min = =2Cυ min . Для пересыхающих рек рекомендуется принимать Cs min от 2Cυ min до ЗCυ min . В зависимости от величины Cυ годового стока Cs min принимают от 1,5 Cv до 2 Cv.

При недостаточном ряде наблюдений производят удлинение этого ряда по реке-аналогу. При кратковременных наблюдениях (один -два года) в правильности выбора аналога убеждаются определением в хронологическом порядке отношения расходов грунтового питания Qa реки-аналога и расходов Q рассматриваемой реки:

(8.1)

Если в течение нескольких месяцев эти отношения постоянны или близки между собой, то условия грунтового питания обеих рек считают одинаковыми.

Рис. 8.1. Изолинии среднемесячных минимальных модулей стока за летний период, л/сек·см² (по Л. Н. Попову)

Тогда при определении минимумов расчетной обеспеченности поступают следующим образом:

1) для тех месяцев, у которых определялись указанные коэффициенты К, определяют средний из среднемесячных для расчетного створа расход Qp и средний расход Qa реки-аналога;

2) вычисляют по Qcp, Cv и Cs минимальные месячные расходы расчетной обеспеченности реки-аналога, например, Q95% и Q97% ;

3) берут отношения

и (8.2)

Расчетные минимальные месячные расходы в рассматриваемом створе определяют при помощи полученных величин Qp и коэффи­циентов С95% и C97%:

(8.3)

(8.4)

Рис. 8.2. Изолинии среднемесячных минимальных модулей стока за зимний период, л/сек·км2 (по Л. Н. Попову)

 Если по расчетному створу имеется два-три года наблюдений над минимальным стоком, то указанным способом определяют Q95% и Q97% для каждого года в отдельности и в качестве расчетного для каждой обеспеченности принимают средний из расходов, установленных за эти годы.

Минимальные расходы воды расчетной обеспеченности определяются методом, аналогичным определению средних годовых расходов. Построение кривых обеспеченности производится отдельно для зимнего и летне-осеннего периодов. Если в составе ряда минимальных расходов воды имеются нулевые значения вследствие пересыхания или промерзания реки, величина Cv определяется графо-аналитическим способом по эмпирической кривой обеспеченности.

Пример 8.1. Определить минимальные средние месячные расходы воды на р. Печа у д. Падун (Кольский полуостров) в зимний и летне-осенний сезоны, обеспеченные на 90%.

Сведения о стоке исследуемой реки имеются с 1933 по 1965 г. Анализ водного режима реки показывает, что в зимний сезон меженный период является продолжительным и устойчивым, в то время как в летне-осенний сезон он довольно часто нарушается дождевыми паводками, являясь прерывистым или коротким. Поэтому в зимний сезон используется величина минимального расхода воды, среднего за календарный месяц, а в летне-осенний сезон в многоводные годы производится сдвижка по времени и, вместо календарного среднего месячного, используется средний расход воды за 30 суток с наименьшим стоком. Результаты произведенной выборки минимальных средних месячных (30-дневных) расходов воды за зимний и летне-осенний сезоны приведены в таблица 4.1.

Таблица 8.1

Минимальные средние месячные (30-дневные) расходы воды р. Печау д. Падун

 № п/п

Год

Q зимний м³/сек

Q летний м³/сек

№ п/п

Год

Q зимний м³ /сек

Q летний м³/сек

5,34

9,42

2,65

6,82

3,30

13,9

2,16

16,6*

4,10

15,1

4,49

19,0*

3,23*

9,15*

3,47

9,32

2,75

4,36

3,55

11,6*

2,60

14,2*

4,02

9,68

i

3,70

7,70 *

2,62

9,79*

3,50

23,1 *

3,43

16,8*

3,58

9,64

3,79

10,5

2,08

6,56

3,77

14,4

3,02

21,1 *

2,98

5,71

4,53

20,3

1,70

17,7

4,03

7,29 *

3,64

15,8

3,90*

13,8*

3,81

12,3

2,77

15,4

4,10

11,1

2,52

16,2*

3,87

29,8

4,97

16,0

 

* Расход воды, определенный со сдвижкой по времени, т. е. за период наименьшего стока продолжительностью 30–23 дня.

Исходя из данных этой таблицы, для зимнего сезона получаем следующие параметры, необходимые для построения кривой обеспеченности: Q=3,45 м³/сек, Cv=0,23 при σn=4,8%. Эмпирическим точкам соответствует теоретическая кривая при Cs = 2Cv. Тогда искомая величина Q90% будет равна 2,4 м3/сек.

В летне-осенний сезон величина среднего многолетнего минимального 30-дневного расхода воды составляет 13,3 м3/сек, что на 14% меньше величины, определенной по календарным месяцам без сдвижки по времени. Значения других параметров следующие: Сv = 0,41; σn=7,1%, т.е. в пределах допустимой ошибки. Эмпирической кривой, построенной на клетчатке вероятности, наиболее соответствует теоретическая биномиальная кривая при Сs = 2Сv. Искомая величина минимального 30-дневного расхода воды обеспеченностью 90% составляет 6,94 м3/сек.

Пример 8.2.

Определить минимальные средние месячные расходы воды в зимний и летне-осенний сезоны, обеспеченные на 5, 15, 25, 75, 90, 99 %. Сведения о стоке исследуемой реки имеются с 1963 по 1995 г. Результаты произведенной выборки минимальных средних месячных (30-дневных) расходов воды за зимний и летне-осенний сезоны приведены в таблица 8.2.

Таблица 8.2

Минимальные средние месячные (30-дневные) расходы воды реки

 

№ п/п

Год

Q зимний м³/сек

Q летний м³/сек

№ п/п

Год

Q зимний м³ /сек

Q летний м³/сек

7,34

11,42

4,65

6,82

5,30

23,9

4,16

16,6

6,10

15,1

6,49

19,0

5,23

11,15

7,47

11,32

4,75

4,36

7,55

11,6

4,60

14,2

8,02

11,68

i

5,70

7,70

6,62

11,79

5,50

23,1

7,43

16,8

5,58

11,64

7,79

10,5

4,08

6,56

7,77

14,4

6,02

21,1

6,98

5,71

6,53

20,3

3,70

17,7

6,03

7,29

3,64

15,8

6,90

23,8

 

 

 

4,77

15,4

 

 

 

 

4,52

16,2

 

 

 

 

7,97

16,0

 

 

 

 

Расчет минимальных расходов воды на неизученных реках или в случае, когда имеющийся фактический материал не пригоден для использования в расчетах по статистическим формулам, производится в основном двумя способами: по картам изолиний минимального стока и по эмпирическим зависимостям.

Карты изолиний используются при расчетах минимального 30-дневного стока средних рек, с площадью водосбора от 1000 – 2000 (критическая площадь) до 75 000 км2. Реки с площадью водосбора, меньшей критической, относятся к малым рекам.

Они имеют величину модуля минимального стока, отличную от аналогичной характеристики средних рек. Способ определения минимального стока на малых реках излагается ниже. Критическая площадь показывает величину площади бас­сейна, начиная с которой на реках данного района практически не наблюдается изменение модуля минимального 30-дневного стока (М30) с ростом площади бассейна (F). Она определяется путем построения зависимости M30=f(F) на двуосной логарифмической клетчатке, на которой критической площади будет со ответствовать точка перегиба кривой при переходе ее в прямую, близкую к горизонтальной линии.

На территории России выделено 11 районов в зимний сезон и 14 районов в летне-осенний, в которых реки имеют близкие по размеру критические площади бассейнов. Их величина изменяется от 800 до 10 000 км2. Поэтому для ее определения в данном районе может быть использована карта районов (рис. 8.3., 8.4.) для определения минимальных 30-дневных расходов воды на малых реках и таблица наибольших (критических) площадей бассейнов малых рек (табл. 8.3).

Таблица 8.3.

Наибольшие критические площади бассейнов (км2) малых рек

Индекс района по карте

Летне-осенний сезон

Зимний сезон

Индекс района по карте

Летне-осенний сезон

Зимний сезон

А

Д

Б

Е

В

Ж

Г

 Способ определения минимального 30-дневного стока по картам изолиний аналогичен методу вычисления годового стока. Карты изолиний минимального стока не применяются для озерных рек и рек, расположенных в карстовых районах.

Минимальный 30-дневный сток на малых реках, с площадью водосбора не менее 50 км2, для увлажненных районов и 100 км2 для районов недостаточного увлажнения, рассчитывается по эмпирической зависимости вида

(8.1)

 где – минимальный 30-дневный расход воды, средний за многолетний период, для зимнего или летне-осеннего сезонов;

F – площадь бассейна реки в км2;

а, n, с — параметры, определяемые в зависимости от географического местоположения реки, устанавливаются по таблице и картам районов для определения минимального 30-дневного стока на малых реках (табл. 8.4).

1 – граница и номер района для определения коэффициента изменчивости; 2граница и номер района для определения минимального среднего суточного расхода воды;

Рис. 8.4. Выкопировка из карты районов для определения минимального среднего суточного расхода воды и коэффициента изменчивости 30-дневного стока в летне-осенний сезон.

Таблица 8.4.

Значения параметров а, n, с

 Номер района по карте

Зимний сезон

Летне – осенний сезон

а 103

n

с

а 103

n

с

2,50

1,08

1,40

1,27

1,60

1,05

0,94

1,24

1,00

1,14

0,64

1,22

 

 

 

 

 

 

0,012

1,30

0,0034

1,12

-500

0,72

0,74

-300

0,15

1,05

-200

0,24

0,90

-500

0,00013

1,93

-200

1,10

0,85

-1000

0,053

1,06

-500

0,87

0,84

-160

0,065

1,09

 Для расчета минимальных 30-дневных расходов воды различной обеспеченности коэффициент изменчивости Сv определяется в зависимости от величины среднего многолетнего минимального 30-днсвного модуля стока за зимний или летне-осенний сезон для данного района. В качестве вспомогательного материала используется карта районов для определения коэффициентов изменчивости и таблица значений Cv (табл. 4.5.). Коэффициент асимметрии принимается по аналогии с окружающими изученными реками или назначается по соотношению CS = 2Cv для увлажненных районов и Cs=1,0-1,5 Cv для районов недостаточного увлажнения.

Таблица 8.5.

Значения Cv в зависимости от величины модуля минимального 30- дневного стока за летний и зимний сезоны

Номер района по карте

М зим. мес л/сек с 1 км2

Сv зим. мес

М лет. мес л/сек с 1 км2

Сv лет. мес

0,5-3

0,3-0,2

3-12

0,5-0,3

0-1

0,4-0,3

4-7

0,6-0,3

__

2-4

0,6-0,4

1,5-6

0,3-0,2

3-12

0,4-0,3

1-5

0,4-0,2

1-7

0,5-0,3

0,5-3

0,4-0,2

6-7

0,6-0,3

1-5

0,7-0,3

1-5

0,6-0,3

Минимальные расходы воды малых рек могут быть получены по зависимости минимального 30-дневного модуля стока обеспеченностью 97% от отметки тальвега русла реки в замыкающем створе, выраженной в абс. м. для районов с одинаковыми гидрогеологическими условиями питания реки.

Величина минимального среднего суточного стока устанавливается по его соотношению с минимальным 30-дневным модулем стока по зависимости

Мсут = аМмес - b, (8.2)

 где Мсут — минимальный средний суточный модуль стока в л/сек с 1 км2. Ммес — минимальный 30-дневный модуль стока; а, b — параметры, определяемые в зависимости от местоположения реки (табл. 8.6.).

Таблица 8.6.

Значения параметров а и b для определения минимального среднего суточного модуля стока

Номер района по карте

Зимний сезон

Летне – осенний сезон

а

b

а

b

0,94

0,1

0,82

0,4

0,86

0,1

0,74

0,1

0,80

0,3

0,83

0,70

0,4

0,72

0,70

0,2

0,42

0,75

0,1

0,47

0,1

Пример 8.3. Определить минимальные 30-дневные и средние суточные расходы воды 90%-ной обеспеченности в летне-осенний сезон р. Ура у ст. Ура-Губа (Кольский п-ов).

1. Устанавливаем, что площадь бассейна реки до замыкающего створа составляет 1020 км2.

2. Исходя из местоположения речного бассейна на карте (рис. 8.3), определяем индекс района и по табл. 8.6 устанавливаем величину площади бассейна, до которой река считается малой (критическую площадь). Величина критической площади для района А, в котором находится бассейн р. Ура, составляет 1400 км2. Следовательно, расчет необходимо производить по схеме, применяемой для определения минимального стока на малых реках.

3. По той же карте находим, что номер района для определения минимального стока малой реки. По табл. 8.4 определяем значения параметров расчетной формулы для района 1, которые равны а = 0,0014, n = 1,27, С=95. Подставив все расчетные параметры в формулу 8.1 получаем, что величина среднего многолетнего минимального 30-дневного расхода воды в летне-осенний сезон составляет 9,85 м3/сек, или 9,65 л/сек с 1 км2.

4. Для определения коэффициента изменчивости Cv по карте (рис. 8.4) устанавливаем, что бассейн р. Ура расположен в районе 1. По табл. 8.5 находим, что в районе 1 величине модуля 9,65 л/сек с 1 км2 соответствует значение коэффициента изменчивости Cv, равное 0,34 (величина Cv определена путем интерполяции с учетом того, что большему значению модуля соответствует меньшая величина Cv).

5. Величина коэффициента асимметрии Cs принимается в соответствии с рекомендацией для увлажненных районов равной 2 Cv

6. По установленным параметрам Q = 9,85 м3/сек, Cv = 0,34 и Cs =2 Cv определяем, что расчетное значение минимального 30-дневного расхода воды 90%-ной обеспеченности равно 5,3 мг/сек.

7. Для расчета минимального среднего суточного расхода воды по уравнению используется карта, показанная на рис. 8.4, по которой устанавливается, что р. Ура расположена в районе 1, для которого районные параметры а и b равны соответственно 0,82 и 0,4 (значения параметров определены по табл. 8.6). В качестве параметра Ммес подставляется величина М90%,равная 5,2 л/сек с 1 км2. В результате расчета получаем, что искомая величина минимального среднего суточного расхода воды (после перевода модуля в расход воды) 90%-ной обеспеченности составляет 3,94 м3/сек.

Определение расчетных минимальных расходов воды при отсутствии гидрометрических данных

Процесс формирования минимального стока на больших, средних и малых реках имеет ряд особенностей, поэтому и способы определения расчетных минимальных расходов для малых рек отличаются от расчета больших и средних.

К большим, средним и малым относят реки с площадью водосбора соответственно более 75000 км2, от 75000 до 10000 и менее 10000 км2.

Расчетные минимальные расходы воды (м3/с):

 

Qp=Q80% ʎp, (123)

 

где Q80%- минимальный 30-суточный (среднемесячный) расход (м3/с) ежегодной вероятностью превышения р=80%; ʎр- переходный коэффициент от минимального расхода обеспеченностью 80% к расходу другой обеспеченности; определяют по таблице, приведенной в СП 33-101-2003.

Для больших и средних рек минимальный 30- суточный расход (м3/с):

 

Q80%= 10-3q80%F,(124)

 

где q80%- минимальный 30- суточный модуль стока ежегодной вероятностью превышения 80%, л/(с км2);F- площадь водосбора, км2.

Минимальный 30-суточный модуль стока воды обеспеченности 80% за летне-осенний и зимний периоды находят по рекам – аналогам или по картам СП 33-101-2003 для центра тяжести расчетного бассейна путем интерполяции между изолиниями стока.

Для малых рек с площадью водосбора меньшей, чем указано в таблице 17. 4. 1, но не менее 20 км2 для увлажненных районов и 50 км2 для районов недостаточного увлажнения минимальный 30- суточный расход 80% обеспеченности определяют по эмпирической формуле (м3/с):

Q80%=10-3 a (F + f0)n (125)

где а, f0, n - параметры, определяемые в зависимости от географических районов по таблице СП 33-101-2003; F- площадь водосбора реки, км2.

Наинизшие расходы воды на реках СССР наблюдаются в периоды летней и зимней межени. В зимнее время почти все реки переходят в основном на грунтовое питание и в результате постепенного истощения запасов грунтовых вод к концу зимнего периода обладают особенно низкой водностью. Летом большинство рек (за исключением рек с половодьем в теплую часть года, с. преобладанием дождевого и ледникового питания) также прет имущественно питается грунтовыми водами, причем наиболее низкий сток наблюдается обычно в наиболее жаркое время, когда ,особенно велики потери на испарение. Соотношение этих двух минимумов стока - зимнего и летнего - таково, что в северных районах СССР (в тундровой и лесной зонах), как правило, наинизшими в году являются зимние расходы воды, а в южных частях страны (лесостепная, степная и полупустынная зоны) годовой минимум стока падает преимущественно на конец лета и осень. Центральные районы (лесостепь) занимают в этом отношении промежуточное положение. Наинизший годовой сток здесь может быть и летом и зимой. Изложенное можно иллюстрировать на примере некоторых рек Европейской части СССР (табл. 8.7.).

Таблица 8.7.

Минимальные модули стока на некоторых реках Европейской части СССР

Район

Река

Пункт

Среднемесячный минимальный модуль стока, л/сек км2

зимний

летний

Лесная зона То же То же

Суна Мета Ловать

Пор-Порог Потерпелицы Холм

4,0 1,7 1,4

5,9 2,4 1,3

Лесостепная и степная зоны То же

Оскол Сорокине

Бузулук Байгоровка

1,8 1,3

0,13 0,05

Относительная величина наименьшего в году расхода рек (величина модуля минимального стока) в равнинных областях, как например в Европейской части СССР, закономерно падает в направлении с севера на юг вместе с уменьшением относительной водности рек. Эту закономерность, так же как и в отношении нормы годового стока, можно представить на карте в виде изолиний минимального стока рек (рис. 8.5). На территории Европейской части СССР, как показано на этой карте, величина минимального стока закономерно уменьшается от 2 л/сек км2 и более на севере до 1,0-0,5 в центральной части и далее до 0,1 л/сек км2 в степной зоне на юге. В южной части степной зоны и в полупустынной зоне местные реки полностью пересыхают, т. е. минимальный их сток равен нулю. Особенно низким минимальным стоком отличаются реки Восточной Сибири и Дальнего Востока, где при наличии вечной мерзлоты грунтовое питание исключительно мало.

Рис. 8.5. Минимальный сток рек Европейской части СССР (в л/сек км2) (по В. А. Урываеву).

Исследования показывают, что минимальный сток реальных речных бассейнов часто очень сильно отличается от стока, полученного по карте изолиний минимального стока. Эти отклонения объясняются тем, что минимальный сток, помимо климатических факторов, тесно связан с другими особенностями водосбора и в первую очередь с геолого-почвенными условиями или точнее - с условиями подземного питания. Чем более водоносными являются породы, слагающие водосбор, тем при прочих равных условиях больше (выше) будет минимальный сток. Из двух одинаковых рек, расположенных в одних и тех же климатических условиях, бассейн с песчаными почво-грунтами будет иметь более высокие минимумы по сравнению, например с бассейном, сложенным глинистыми и суглинистыми породами.

Не совсем точным является принятое при построении карты изолиний положение о независимости величины минимального стока от площади водосбора. В действительности размер водосбора заметно влияет на величину минимального стока: Qмин = f(F). Эта зависимость проявляется в том, что с увеличением площади водосбора, как правило, увеличивается глубина эрозионного вреза рек. Понятно, что чем глубже река врезается в поверхность земли, тем более возрастает доля грунтового питания. Характер зависимости Qмин = f(F) таков, что вначале минимальный сток резко возрастает с увеличением площади водосбора, затем, достигнув некоторого предела (различного в тех или иных условиях), величина водосбора почти не влияет на изменение стока.

Минимальный сток малых рек, в отличие от больших и средних, часто бывает равен нулю вследствие их перемерзания зимой и пересыхания в летние периоды. Вероятность пересыхания или перемерзания водотоков является большей у рек с меньшими водосборами; большое значение также имеет и длительность данного явления.

Рассматривая распространение явления пересыхания и перемерзания рек на территории СССР, можно выделить три характерные области: северную, среднюю и южную.

Северная область, соответствующая примерно лесной и тундровой зонам, отличается тем, что здесь преобладает перемерзание рек, тогда как пересыханию подвержены лишь мелкие водотоки. В пределах данной области на территории Европейской части СССР перемерзают реки с площадями водосбора до 100 км2. Широко распространено явление перемерзания также и в Азиатской части СССР, в зоне вечной мерзлоты. Так, на территории Восточной Сибири перемерзают до дна не только малые реки, но даже такие, как Яна, Индигирка, Вилюй, имеющие площади водосбора до 200000 км2 и более. На Дальнем Востоке перемерзает Шияка у г. Сретенска (F = 172000 км2) и ряд других рек, причем продолжительность явления достигает 6-7 месяцев.

Не следует думать, однако, что в зоне вечной мерзлоты зимою перемерзают и прекращают сток сплошь все малые и средние реки.

В действительности, даже в условиях сурового климата Восточной Сибири, встречаются реки не только не перемерзающие, но даже и не замерзающие в течение всей зимы. Такое, на первый взгляд парадоксальное явление связано с выходами относительно теплых подмерзлотных вод, приуроченными к районам сравнительно молодых разломов земной коры. В средней из трех выделенных областей, приблизительно соответствующей лесостепной зоне, явления перемерзания и пересыхания наблюдаются примерно в одинаковой мере. Эти явления отмечаются здесь на реках с площадями водосборов до 500-1000 км2.

Наконец, южная область, соответствующая приблизительно степной и полупустынной зонам, отличается широко распространенным явлением пересыхания рек. В ее северной части пересыхают реки с площадями водосборов в 500-1000 км2, а в южной - до 3000-5000 км2. В засушливых степях и полупустынных районах пересыхают такие реки, как Большой и Малый Узени, Кума и даже Эмба с площадями водосборов до 50 000 км2.

Рассмотренная в самых общих чертах закономерность изменения минимального стока рек СССР теснейшим образом связана с зональностью грунтовых вод.

Большие реки, протекающие через засушливые полупустынные и пустынные пространства, как-то: Урал, Аму-Дарья, Сыр-Дарья, не пересыхают, но по пути теряют значительную часть своего стока на испарение и фильтрацию. Так, например, Аму-Дарья теряет около 25% своих вод на пути через Кара-Кумы (включая и разбор на орошение).

Разница между наивысшими и наинизшими расходами воды за многолетний период характеризует размах колебаний - амплитуду колебаний расходов воды, или степень естественной зарегулированности стока рек. Очевидно, что чем более равномерно распределен сток в году, тем меньше амплитуда колебаний расходов воды, и наоборот. Амплитуду колебаний расходов воды в реках можно характеризовать отношением наибольшего наблюденного расхода к наименьшему: Qнаиб/Qнаим = К; величину К можно назвать коэфициентом естественной зарегулированности.

В табл. 24 приведены данные об амплитудах колебаний расходов воды ряда больших рек СССР и соответствующие им значения коэфициента К; эти данные показывают, что в большинстве случаев реки имеют крайне неравномерный сток. Наибольшим размахом колебаний расходов воды отличаются реки зоны вечной мерзлоты, где К достигает особенно больших значений; для Зеи, например, он составляет около 9000. Это вполне понятно, так как здесь перемерзанию подвергаются даже реки значительных размеров (Яна и др.), а потому и минимальный сток ничтожно мал или равен нулю; в последнем случае величина К становится бесконечно большой или вообще неопределенной.

Таблица 8.8.

Многолетние амплитуды колебаний расходов воды некоторых рек СССР

Река

Пункт

Площадь водосбора км2

Расход воды, м3/сек

средний годовой

наибольший

наименьший

Qнаиб/Qнаим

Северная Двина

Абрамково

Печора

Оксино

Волга

Ярославль

Реки, сток которых зарегулирован озерами

Нева

Петрокрепость

6,5

Свирь

Мятусово

Волхов

Гостинополье

Вуокса

Иматра

5,6

Ангара

Пашки

5,9

В засушливых районах значения К также велики; так, например, у Южного Буга величина этого коэффициента равна 1612. Объясняется это малым летним стоком и пересыханием малых рек (Большой и Малый Узени, Эмба, Кума и др.); и в этом случае значение К становится неопределенным.

Наименьшим размахом колебаний расходов обладают реки лесной зоны (вне распространения вечной мерзлоты), где наблюдается относительно высокий сток в летнюю и зимнюю межень, например Волга. Относительно невелики колебания расходов на горных реках, особенно у тех, которые имеют ледниковое питание.

Огромное регулирующее влияние на сток оказывают озера, сильно уменьшая размах его колебаний. Под влиянием озерного регулирования максимальный сток весьма снижается, а минимальный, наоборот, повышается, в результате чего величина К резко уменьшается. Это особенно отчетливо видно не примере таких типичных озерных рек, как Нева, Свирь, Вуокса, Ангара, у которых максимальный расход воды всего в 5-10 раз больше минимального за многолетний период. При уменьшении степени озерности бассейна регулирующее влияние на сток сильно падает. Примером может служить р. Волхов, вытекающая из значительно меньшего по размерам площади и мелководного оз. Ильмень, регулирующее влияние которого незначительно.

Соседние файлы в предмете Гидрология