Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие 700431.doc
Скачиваний:
14
Добавлен:
01.05.2022
Размер:
6.57 Mб
Скачать

3. Основы теории максвелла для электромагнитного поля

Обобщив основные экспериментальные законы электричества и магнетизма, Максвелл создал единую теорию электромагнитного поля. В электродинамике теория Максвелла играет ту же роль, что и законы Ньютона в классической механике. Она позволила не только объяснить с единых позиций уже известные факты, но и предсказать существование электромагнитных волн.

Принципиально новой идеей, выдвинутой Максвеллом, была идея о взаимных превращениях электрических и магнитных полей. Обобщая закон Фарадея для электромагнитной индукции, Максвелл прдположил, что изменяющееся магнитное поле порождает вихревое электрическое поле, циркуляция вектора напряженности которого определяется уравнением

. (3.1)

В свою очередь, следует ожидать, что изменяющееся во времени электрическое поле, должно создавать переменное магнитное поле. Для установления количественой связи между изменяющимся электрическим и вызванным им магнитным полями, Максвелл ввел понятие тока смещения. Рассматривая конденсатор в цепи переменного тока, он предположил, что ток проводимости замыкается в конденсаторе током смещения. Ток смещения представляет собой изменяющееся электрическое поле и не сопровожда- ется движением электрических зарядов, но он способен создавать магнитное поле, как и ток проводимости. Плотность тока смещения равна

, (3.2)

где  вектор электрического смещения.

Сумму тока проводимости и тока смещения называют полным током, его плотность равна

. (3.3)

Введение полного тока позволяет обобщить теорему о циркуляции напряженности магнитного поля, представив ее в виде

(3.4)

Из данного уравнения следует, что магнитное поле может возбуждаться не только движущимися зарядами, но и изменениями электрического поля, подобно тому, как электрическое поле может возбуждаться не только электрическими зарядами, но и изменениями магнитного поля.

К рассмотренным уравнениям (3.1 и 3.4) Максвелл добавил еще два уравнения, выражающие теорему Гауcса для векторов и электромагнитного поля

(3.5)

. (3.6)

Полученная система четырех интегральных уравнений выражает в наиболее компактной форме все основные законы электромагнитного поля. Из этих уравнений, подчеркнем это еще раз, следует, что источником электрического поля являются как заряды, так и изменяющееся со временем магнитное поле. В свою очередь, магнитное поле возбуждается либо движущимися зарядами (ток проводимости), либо переменным электрическим полем (ток смещения).

4. Колебания и волны

4.1. Механические колебания и волны

4.1.1. Гармонические колебания. Дифференциальное уравнение гармонических колебаний

Колебаниями называют процессы, характеризующиеся повторяемостью во времени. Простейшими из них являются гармонические колебания, при которых колеблющиеся величины изменяются со временем по закону синуса или косинуса.

Кинематическое уравнение гармонических колебаний имеет вид

, (4.1)

где X - смещение системы от своего положения равновесия: A - амплитуда колебаний; - фаза колебаний; -начальная фаза ; -собственная циклическая частота.

График гармонических колебаний представлен на рис. 4.1.

Рис. 4.1.

Продифференцировав дважды уравнение (4.1) по времени найдём скорость и ускорение колеблющейся точки

, (4.2)

. (4.3)

Дифференциальное уравнение гармонических колебаний имеет вид

. (4.4)