Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физ зачёт.docx
Скачиваний:
13
Добавлен:
19.11.2019
Размер:
713.53 Кб
Скачать

16. Физиологические особенности гладких мышц (скорость, длительность, сила, латентный период, механизм сокращения, особенности энергетического обеспечения мышцы, тетанизация, пластичность)

Гладкие мышцы образуют мышечные слои стенок кровеносных сосудов и внутренних органов. Они построены из веретенообразных одноядерных мышечных клеток. Гладкие мышцы разделяются на две

основные группы: мультиунитарные и унитарные. Мультиунитарные мышцы функционируют независимо друг от друга, и каждое волокно может иннервироваться отдельным нервным окончанием от вегетативной нервной системы. Такие волокна обнаружены в ресничной мышце глаза, мигательной перепонке и др. У унитарных мышц волокна настолько тесно переплетены, что их мембраны могут сливаться, образуя электрические контакты (нексусы). При раздражении одного волокна за счет этих контактов ПД быстро распространяются на соседние волокна. Поэтому, несмотря на то, что двигательные нервные окончания расположены на небольшом числе мышечных волокон, в реакцию вовлекается вся мышца. Такие мышцы имеются в большинстве органов: пищеварительном тракте, матке, в мочеточниках. Особенностью гладких мышц является их способность осуществлять медленные и длительные тонические сокращения. Медленные, ритмические сокращения гладких мышц желудка, кишечника, мочеточников и других органов обеспечивают перемещение содержимого этих органов. Длительные тонические сокращения гладких мышц обеспечивают функционирование сфинктеров полых органов, которые препятствуют выходу их содержимого.

Важным свойством гладких мышц является их пластичность, т.е. способность сохранять приданную им при растяжении длину. Скелетная мышца в норме почти не обладает пластичностью. При удалении растягивающего груза скелетная мышца быстро укорачивается, а гладкая остается растянутой. Высокая пластичность гладких мышц имеет большое значение для нормального функционирования полых органов. Например, пластичность мышц мочевого пузыря по мере его наполнения предотвращает избыточное повышение давления. Сильное и резкое растяжение гладких мышц вызывает их сокращение, что обусловлено нарастающей при растяжении деполяризацией клеток, которая обеспечивает автоматию гладкой мышцы. Такое сокращение играет важную роль в авторегуляции тонуса кровеносных сосудов, а также способствует непроизвольному опорожнению переполненного мочевого пузыря в тех случаях, когда нервная регуляция отсутствует в результате повреждения спинного мозга. В гладких мышцах тетаническое сокращение возникает при низкой частоте стимуляции. В отличие от скелетных, гладкие мышцы способны развивать спонтанные тетанообразные сокращения в условиях денервации и даже после блокады интрамуральных ганглиев. Такие сокращения возникают вследствие активности клеток, обладающих автоматией (пейсмекерных клеток), которые отличаются по электрофизиологическим свойствам от других мышечных клеток. В них появляются пейсмекерные потенциалы, деполяризующие мембрану до критического уровня, что вызывает возникновение потенциала действия. Особенностью гладких мышц является их высокая чувстви- чувствительность к медиаторам, которые оказывают на спонтанную тивность пейсмекеров модулирующие влияния. При нанесении ацетилхолина на препарат мышцы толстой кишки частота ПД возрастает. Вызываемые ими сокращения сливаются, образуется почти гладкий тетанус. Чем выше частота ПД, тем сильнее сокращение. Норадреналин, напротив, гиперполяризует мембрану,снижая частоту ПД и величину тетануса. Возбуждение гладкомышечных клеток вызывает повышение концентрации кальция в саркоплазме, что активирует сократительные структуры. Так же как сердечная и скелетная мышцы, гладкая мышца расслабляется при снижении концентрации ионов кальция. Расслабление гладких мышц происходит медленнее, так как удаление ионов кальция замедлено.

  1. Сокращение гладкой мышцы

Как и в скелетной мышце, пусковым стимулом для сокращения большинства гладких мышц является увеличение количества внутриклеточных ионов кальция. В разных типах гладких мышц это увеличение может быть вызвано нервной стимуляцией, гормональной стимуляцией, растяжением волокна или даже изменением химического состава окружающей волокно среды.

Однако в гладких мышцах нет тропонина (регуляторного белка, который активируется кальцием). Сокращение гладкой мышцы активируется совершенно другими механизмами: соединение ионов кальция с кальмодулином, активация миозинкиназы и фосфорилирование головки миозина.

Вместо тропонина гладкомышечные клетки содержат большое количество другого регуляторного белка, кальмодулина. Хотя этот белок похож на тропонин, он отличается способом запуска сокращения. Кальмодулин делает это путем активации миозиновых поперечных мостиков. Активация и сокращение осуществляются в следующей последовательности:

1. Ионы кальция связываются с кальмодулином.

2. Комплекс кальмодулин-кальций соединяется с фосфорилирующим ферментом миозинкиназой и активирует ее.

3. Одна из легких цепочек каждой головки миозина, называемая регуляторной цепочкой фосфорилируется под действием миозинкиназы. Когда эта цепочка не фосфорилирована, циклического прикрепления и отделения миозиновой головки по отношению к актиновой нити не происходит. Но при фосфорилировании регуляторной цепочки головка приобретает способность к повторному связыванию с актиновой нитью и осуществлению всего циклического процесса периодических «подтягиваний», лежащих в основе сокращения, как и в скелетной мышце.

Прекращение сокращения. Роль миозинфосфатазы. Когда концентрация ионов кальция падает ниже критического уровня, изложенные процессы автоматически развиваются в обратном направлении, кроме фосфорилирования головки миозина. Для обратного развития этого состояния нужен другой фермент — миозинфосфатаза, который локализуется в жидкостях гладкомышечной клетки и отщепляет фосфатазу от регуляторной легкой цепочки. После этого циклическая активность, а значит и сокращение, прекращается.

Следовательно, время, необходимое для расслабления мышцы, в большой степени определяется количеством активной миозинфосфатазы в клетке.

2. Скорость, длительность, сила, латентный период, энергетическое обеспечение ГМ

Энергия, необходимая для поддержания сокращения гладкой мышцы. При сокращении гладкой мышцы требуется лишь 1/10-1/300 энергии, потребляемой скелетной мышцей для поддержания той же степени напряжения. Полагают, что это тоже результат медленных циклов прикрепления и открепления поперечных мостиков, поскольку на каждый цикл независимо от его длительности требуется только 1 молекула АТФ. Такое малое потребление энергии гладкой мышцей чрезвычайно важно для экономии общей энергии организма, поскольку гладкие мышцы таких органов, как кишечник, мочевой пузырь, желчный пузырь и других практически постоянно находятся в состоянии тонического сокращения.

Длительность. Замедленность начала сокращения и расслабления всей гладкомышечной ткани. Типичная гладкомышечная ткань начинает сокращаться спустя 50-100 мсек после возбуждения и примерно через 0,5 сек достигает максимального сокращения, затем снижает силу сокращения в течение следующих 1-2 сек, что дает общее время сокращения 1-3 сек. Это примерно в 30 раз больше продолжительности одиночного сокращения обычного волокна скелетной мышцы. Существуют очень много типов гладких мышц, поэтому сокращения некоторых из них могут быть как короткими (0,2 сек), так и длительными (30 сек).

Сила мышечного сокращения. Несмотря на относительно небольшое количество миозиновых нитей и замедленность циклов поперечных мостиков в гладких мышцах, максимальная сила их сокращения часто выше, чем сила сокращения скелетных мышц, а именно 4-6 кг/см площади поперечного сечения для гладкой мышцы по сравнению с 3-4 кг для скелетной мышцы. Эта большая сила сокращения гладких мышц является результатом длительного периода прикрепления миозиновых поперечных мостиков к нитям актина.