Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛЕКЦИИ-пределы,непрерывноть,производные.docx
Скачиваний:
11
Добавлен:
10.11.2019
Размер:
747.64 Кб
Скачать

Сходящиеся и ограниченные последовательности.

Определение: Последовательность называется сходящейся, если она имеет конечный предел.

- число.

В противном случае последовательность называется расходящейся.

Определение: Последовательность {xn} называется ограниченной сверху, если существует число M такое, что для всех членов последовательности xn M.

Определение: Последовательность {xn} называется ограниченной снизу, если существует число m такое, что для всех членов xnm.

Определение: Последовательность называется ограниченной, если она ограниченна сверху и снизу, т.е.  число A>0 такое, что для всех членов последовательности |xn|A.

Бесконечно малые и бесконечно большие последовательности. Связь между ними.

Определение: Последовательность {xn} называется бесконечно малой, если для любого, сколь угодно малого, положительного числа e, найдется номер последовательности N, зависящий от , начиная с которого выполняется неравенство |xn|<e.

.

Определение: Последовательность {xn} называется бесконечно большой, для любого, сколь угодно большого, положительного числа А, найдется номер последовательности N, начиная с которого выполняется неравенство |xn|>A.

.

Теорема: Бесконечно малые (б/м) и бесконечно большие (б/б) последовательности взаимообратные.

Док-во:

1) б/б есть обратная величина для б/м.

Пусть {xn} – б/м при n®¥. По определению: " >0 $N: "n>N Þ |xn|<e.

Перейдем к обратным величинам: . Обозначим . Если e – б/м, то А – б/б. Тогда , что означает из определения, что – б/б.

2) б/м есть обратная величина для б/б.

Пусть {xn} ‒ б/б при n®¥. По определению: "A>0 $N: "n>N Þ |xn| > A.

Перейдем к обратным величинам: . Обозначим . Если А – б/б, то e – б/м. Тогда , что означает из определения, что ‒ б/м.

Ч.т.д.

Свойства сходящихся последовательностей.

1. Единственность.

Теорема: Сходящаяся последовательность имеет только один предел.

2. Арифметические действия.

Теорема: Если последовательности {xn} и {yn} сходящиеся, причем и , тогда ; ; при условии .

3. Необходимое условие сходимости.

Теорема Больцано-Вейерштрасса:

Сходящаяся последовательность ограничена.

Док-во:

Пусть последовательность {хn} сходится Þ существует конечный предел Þ по определению: для  > 0  номер N, начиная с которого .

Из неравенства: .

Выберем С=max { }.

Значит, для членов последовательности {xn} выполняется неравенство . Тогда по определению последовательность {xn} ограничена.

Ч.т.д.

4. Достаточные условия существования предела.

Определение: Последовательность {xn} называется возрастающей (неубывающей), если x1<x2<… (x1x2…).

Пример: 1<2<3<4<…, {xn} – возрастает.

11<22<33…, {xn} - неубывающая.

Определение: Последовательность {xn} называется убывающей (невозрастающей), если x1>x2>… (x1x2…).

Пример: 1>1/2>1/4>…, {xn} – убывающая.

11/21/2>1/31/3>…, {xn} - невозрастает.

Теорема1: Если последовательность монотонно возрастает и ограничена сверху, то она имеет конечный предел.

Теорема2: Если последовательность монотонно убывает и ограничена снизу, то она имеет конечный предел.

Док-во:

Докажем теорему 1.

{xn} возрастет Þ x1<x2<….

{xn} ограничена сверху Þ существует число М такое, что при "n xn М. Отступим от М на , тогда существует номер N, начиная с которого

М-< xn М.

xn

М

М-

0 1 2 3 4 n

Усилим правую часть неравенства:

М-< xn<М+, т.е. .

Значит, для  > 0  номер N, начиная с которого справедливо

. Þ . Þ по определению: {xn} сходится.

Теорема 2 доказывается аналогично.

Ч.т.д.