Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
biologia_ekz.doc
Скачиваний:
21
Добавлен:
20.09.2019
Размер:
3.9 Mб
Скачать

Синтез в эндоплазматическом ретикулуме

Важной функцией аппарата Гольджи является дополнительная обработка веществ, синтезированных в эндоплазматическом ретикулуме. Аппарат Гольджи также способен к синтезу некоторых углеводов, которые не могут синтезироваться в ретикулуме, особенно полисахаридов, соединенных с молекулой белка. Наиболее важными из них являются гиалуроновая кислота и хондроитинсульфат.

Эти вещества имеют очень важное значение: (1) являются основными компонентами протео-гликанов, содержащихся в слизи и других секретах экзокринных желез; (2) входят в состав межклеточного вещества, которое заполняет пространство между клетками и коллагеновыми волокнами; (3) являются главными компонентами органического матрикса хрящей и костей. Переработка веществ эндоплазматического ретикулума в аппарате Гольджи. Образование секреторных пузырьков.

Образующиеся в эндоплазматическом ретикулуме вещества, особенно белки, переносятся по его канальцам в направлении гладкого отдела ретикулума, который непосредственно примыкает к аппарату Гольджи. С помощью мелких транспортных вакуолей, постоянно образующихся путем отщепления мембран гладкого ретикулума, эти вещества (белки и другие продукты) переносятся в самые глубокие слои аппарата Гольджи.

Транспортные вакуоли немедленно сливаются и опорожняются в просвет пузырьков аппарата Гольджи. Здесь к веществам присоединяются углеводные цепочки. Важной функцией аппарата Гольджи является также концентрация молекул секрета. Этот процесс начинается с самых глубоких слоев аппарата Гольджи, поэтому концентрация секрета по мере продвижения к поверхностным слоям все возрастает. В итоге и мелкие, и крупные пузырьки с концентрированным содержимым отрываются от мембран и распространяются по всей толще клетки.

Получить представление о затратах времени на выполнение данных процессов можно из следующего примера: если поместить железистую клетку в раствор, содержащий меченые изотопами аминокислоты, то новосинтезированные белки можно будет определить в эндоплазматическом ретикулуме уже через 3-5 мин. В течение 20 мин эти белки появятся уже в аппарате Гольджи, а через 1-2 ч — будут обнаружены в виде секрета на поверхности клеток.

Типы везикул, формируемых аппаратом Гольджи: секреторные пузырьки и лизосомы. В клетке с высокой секреторной активностью аппарат Гольджи производит преимущественно секреторные пузырьки, содержащие белковый секрет, который выделяется через мембрану наружу. Эти пузырьки вначале путем диффузии достигают наружной мембраны, затем сливаются с ней, опорожняя содержимое наружу с помощью процесса, называемого экзоцитозом. В большинстве случаев экзоцитоз начинается с поступления в клетку ионов кальция. Кальций, взаимодействуя с мембраной пузырька посредством пока неизвестного механизма, приводит к их слиянию с мембраной клетки и экзоцитозу с образованием «окна» в мембране и изгнанием содержимого наружу. Некоторые пузырьки, однако, предназначены для использования в клетке.

Использование внутриклеточных пузырьков для восполнения мембранных структур клетки. Некоторые пузырьки, образовавшиеся из мембраны аппарата Гольджи, сливаются с мембраной клетки или внутриклеточных структур, включая митохондрии или ретикулум, и постоянно пополняют убывающий запас мембран путем увеличения их площади. Потеря мембран обычно происходит при формировании фагоцитарных или пиноцитозных пузырьков.

В заключение отметим, что мембранная система клетки, состоящая из эндоплазматического ретикулума и аппарата Гольджи, характеризуется высоким уровнем обменных процессов и участвует как в образовании новых внутриклеточных структур, так и в продукции веществ, подлежащих секреции.

Вопрос №42. Пероксисомы. Образование строение ф-ции.

Пероксисома (лат. peroxysoma) — обязательная органелла эукариотической клетки, ограниченная мембраной, содержащая большое количество ферментов, катализирующих окислительно-восстановительные реакции (оксидазы D-аминокислот, уратоксидазы и каталазы). Имеет размер от 0,2 до 1,5 мкм, отделена от цитоплазмы одной мембраной.

Набор функций пероксисом различается в клетках разных типов. Среди них: окисление жирных кислот, фотодыхание, разрушение токсичных соединений, синтез желчных кислот, холестерина, а также эфиросодержащих липидов, построение миелиновой оболочки нервных волокон, метаболизме фетановой кислоты и т. д. Наряду с митохондриями пероксисомы являются главными потребителями O2 в клетке.

В пероксисоме обычно присутствуют ферменты, использующие молекулярный кислород для отщепления атомов водорода от некоторых органических субстратов (R) с образованием перекиси водорода (H2O2):

RH2 + O2 → R + H2O2

Каталаза использует образующуюся H2O2 для окисления множества субстратов — например, фенолов, муравьиной кислоты, формальдегида и этанола:

H2O2 + R`H2 --> R`+ 2H2O

Этот тип окислительных реакций особенно важен в клетках печени и почек, пероксисомы которых обезвреживают множество ядовитых веществ, попадающих в кровоток. Почти половина поступающего в организм человека этанола окисляется до ацетальдегида этим способом. Кроме того, реакция имеет значения для детоксикации клетки от самой перекиси водорода.

Новые пероксисомы образуются чаще всего в результате деления предшествующих, как митохондрии и хлоропласты. Они, однако, могут формироваться и de novo из эндоплазматического ретикулума, не содержат ДНК и рибосом, поэтому высказанные ранее предположения об их эндосимбиотическом происхожденим необоснованны[1].

Все ферменты, находящиеся в пероксисоме, должны быть синтезированы на рибосомах вне её. Для их переноса из цитозоля внутрь органеллы мембраны пероксисом имеют систему избирательного транспорта.

Вопрос №43. Организация цитоскелета.

Цитоскеле́т — это клеточный каркас или скелет, находящийся в цитоплазме живой клетки. Он присутствует во всех клетках как у эукариот, так и у прокариот. Это динамичная, изменяющаяся структура, в функции которой входит поддержание и адаптация формы клетки ко внешним воздействиям, экзо- и эндоцитоз, обеспечение движения клетки как целого, активный внутриклеточный транспорт и клеточное деление. Кератиновые промежуточные филаменты в клетке. Цитоскелет образован белками. В цитоскелете выделяют несколько основных систем, называемых либо по основным структурным элементам, заметным при электронно-микроскопических исследованиях (микрофиламенты, промежуточные филаменты, микротрубочки), либо по основным белкам, входящим в их состав (актин-миозиновая система, кератины, тубулин-динеиновая система).

Актиновые филаменты (микрофиламенты) Порядка 7 нм в диаметре, микрофиламенты представляют собой две цепочки из мономеров актина, закрученные спиралью. В основном они сконцентрированы у внешней мембраны клетки, так как отвечают за форму клетки и способны образовывать выступы на поверхности клетки (псевдоподии и микроворсинки). Также они участвуют в межклеточном взаимодействии (образовании адгезивных контактов), передаче сигналов и, вместе с миозином — в мышечном сокращении. С помощью цитоплазматических миозинов по микрофиламентам может осуществляться везикулярный транспорт.

Промежуточные филаменты

Диаметр промежуточных филаментов составляет от 8 до 11 нанометров. Они состоят из разного рода субъединиц и являются наименее динамичной частью цитоскелета.

Микротрубочки представляют собой полые цилиндры порядка 25 нм диаметром, стенки которых составлены из 13 протофиламентов, каждый из которых представляет линейный полимер из димера белка тубулина. Димер состоит из двух субъединиц — альфа- и бета- формы тубулина. Микротрубочки — крайне динамичные структуры, потребляющие ГТФ в процессе полимеризации. Они играют ключевую роль во внутриклеточном транспорте (служат «рельсами», по которым перемещаются молекулярные моторы — кинезин и динеин), образуют основу аксонемы ундилиподий и веретено деления при митозе и мейозе. Цитоскелет прокариот

Долгое время считалось, что цитоскелетом обладают только эукариоты. с в 2001 году описывающей роль бактериальных гомологов актина в клетках Bacillus subtilis, начался период активного изучения элементов бактериального цитоскелета. К настоящему времени найдены бактериальные гомологи всех трех типов элементов цитоскелета эукариот — тубулина, актина и промежуточных филаментов[1]. Также было установлено, что как минимум одна группа белков бактериального цитоскелета.

Вопрос №44.сократительные структуры в клетке.

Цитоскеле́т — это клеточный каркас или скелет, находящийся в цитоплазме живой клетки. Он присутствует во всех клетках как у эукариот, так и у прокариот. Это динамичная, изменяющаяся структура, в функции которой входит поддержание и адаптация формы клетки ко внешним воздействиям, экзо- и эндоцитоз, обеспечение движения клетки как целого, активный внутриклеточный транспорт и клеточное деление. Кератиновые промежуточные филаменты в клетке. Цитоскелет образован белками. В цитоскелете выделяют несколько основных систем, называемых либо по основным структурным элементам, заметным при электронно-микроскопических исследованиях (микрофиламенты, промежуточные филаменты, микротрубочки), либо по основным белкам, входящим в их состав (актин-миозиновая система, кератины, тубулин-динеиновая система).

Микротрубочки – тончайшие трубочки диаметром 24 нм, стенки которых обра-зованы белком тубулином. Глобулярные субъединицы этого белка располагаются по спирали.

Микротрубочки определяют направление перемещения внутриклеточных компонентов, в том числе расхождение хромосом к полюсам клетки при делении ядра. Они участвуют в образовании «цитоскелета». Микрофиламенты – тонкие белковые нити диаметром 6 нм, состоят из белка актина, близкого тому, который содержится в мышцах. Эти нити, как и микротрубочки, являются элементами «цитоскелета». Они образуют кортикальный слой под плазматической мембраной. Кроме микротрубочек, присутствующих в цитоплазме, в клетке имеются микротрубочки, формирующие центриоли клеточного центра, базальные тельца, реснички и жгутики.

Вопрос №45. Микротрубочки и их производное. Промежуточные филаменты.

Микротрубочки присутствуют во всех животных клетках за исключением эритроцитов. Они образованы полимеризованными молекулами белка тубулина, который представляет собой гетеродимер, состоящий из двух субъединиц — альфа- и бета-тубулина. При полимеризации альфа-субъединица одного белка соединяется с бета-субъединицей следующего. Так формируются отдельные протофиламенты, которые, объединяясь по 13, формируют полую микротрубочку, внешний диаметр которой составляет около 25 нм, а внутренний — 15 нм.

Каждая микротрубочка имеет растущий плюс-конец и медленно-растущий минус-конец. Микротрубочки — один из наиболее динамичных элементов цитоскелета. Во время наращивания длины микротрубочки присоединение тубулинов происходит на растущем плюс-конце. Разборка микротрубочек наиболее часто происходит с обоих концов. Белок тубулин, формирующий микротрубочки, не является сократительным белком, и микротрубочки не наделены способностью к сокращению и передвижению. Однако микротрубочки цитоскелета принимают активное участие в транспорте клеточных органелл, секреторных пузырьков и вакуолей. Из препаратов микротрубочек отростков нейронов (аксонов) были выделены два белка — кинезин и динеин. Одним концом молекулы этих белков ассоциированы с микротрубочкой, другим — способны связываться с мембранами органелл и внутриклеточных везикул. С помощью кинезина осуществляется внутриклеточный транспорт к плюс-концу микротрубочки, а с помощью динеина — в обратном направлении.

Промежуточные филаменты (ПФ) — нитевидные структуры из особых белков, один из трех основных компонентов цитоскелета клеток эукариот. Содержатся как в цитоплазме, так и в ядре большинства эукариотических клеток. Средний диаметр ПФ — около 10 нм (9-11 нм), меньше, чем у микротрубочек (около 25 нм) и больше, чем у актиновых микрофиламентов (5-9 нм). Название получили из-за того, что толщина цитоскелетных структур, состоящих из ПФ, занимала промежуточное положение между толщиной миозиновых филаментов и микротрубочек[1]. В ядре известен только один тип ПФ — ламиновых, остальные типы — цитоплазматические.

Доменная структура белковых молекул ПФ довольно консервативна. Полипептид обычно имеет два глобулярных домена на N- и C-концах, которые соединены протяженным суперскрученным палочковидным доменом, состоящим из альфа-спиралей. Основной строительный блок филамента — димер, а не мономер. Он образован двумя полипептидными цепями, обычно двух разных белков, которые взаимодействуют между собой своими палочковидными доменами, образующими двойную суперскрученную спираль. Цитоплазматические ПФ образованы из таких димеров, образующих неполярные нити, толщиной в один блок. Отсутствие полярности у ПФ обусловлено антипараллельной ориентацией димеров в тетрамере. Из них далее образуются более сложные структуры, в которых ПФ могут уплотняться, вследствие чего имеют непостоянный диаметр.

В отличие от актина и тубулина белки ПФ не имеют сайта сязывания нуклеозидтрифосфатов.

Цитоплазматические ПФ есть не у всех эукариот, они обнаружены только у некоторых групп животных. Так, ПФ есть у нематод. моллюсков и позвоночных. но не найдены у членистоногих и иглокожих. У позвочноных ПФ отсутствуют в некоторых клетках (например, олигодендроцитах). В растительных клетках ПФ не обнаружены.[2][3] В большинстве животных клеток ПФ образуют «корзинку» вокруг ядра, откуда направлены к периферии клеток. ПФ особенно много в клетках, подверженных механическим нагрузкам: в эпителиях, где ПФ участвуют в соединении клеток друг с другом через десмосомы, в нервных волокнах, в клетках гладкой и поперечно-полосатой мышечной ткани.

Вопрос №46. Специализированные структуры плазмотической мембраны (микроворсинки, реснички, жгутики)

Микроворсинка — вырост эукариотической (обычно животной) клетки, имеющий пальцевидную форму и содержащий внутри цитоскелет из актиновых микрофиламентов. Из микроворсинок состоит воротничок у клеток хоанофлагеллят и у воротничково-жгутиковых клеток губок и других многоклеточных животных. В организме человека микроворсинки имеют клетки эпителия тонкого кишечника, на которых микроворсинки формируют щеточную кайму, а также механорецепторы внутреннего ухаволосковые клетки.Микроворсинки нередко путают с ресничками, однако они резко отличаются по строению и функциям. Реснички имеют базальное тело и цитоскелет из микротрубочек, способны к быстрым движениям (кроме видоизмененных неподвижных ресничек) и служат у крупных многоклеточных обычно для создания токов жидкости или восприятия раздражителей, а у одноклеточных и мелких многоклеточных животных также для передвижения. Микроворсинки не содержат микротрубочек и способны лишь к медленным изгибаниям (в кишечнике) либо неподвижны.

За упорядочение актинового цитоскелета микроворсинок отвечают вспомогательные белки, взаимодействующие с актином — фимбрин, спектрин, виллин и др. Микроворсинки также содержат цитоплазматический миозин нескольких разновидностей.

Микроворсинки кишечника (не путать с многоклеточными ворсинками) во много раз увеличивают площадь поверхности всасывания. Кроме того. у позвоночных на их плазмалемме закреплены пищеварительные ферменты, обеспечивающие пристеночное пищеварение.

Микроворсинки внутреннего уха (стереоцилии) интересны тем, что образуют ряды с различной, но строго определенной в каждом ряду длиной. Вершины микроворсинок более короткого ряда соединены с более длинными микроворсинками соседнего ряда с помощью белков - протокадгеринов. Их отсутствие или разрушение может приводить к глухоте, так как они необходимы для открывания натриевых каналов на мембране волосковых клеток и, следовательно, для преобразования механической энергии звука в нервный импульс [1]

Хотя микроворсинки сохраняются на волосковых клетках в течение всей жизни, каждая из них постоянно обновляется за счет тредмиллинга актиновых филаментов,

Реснички — органеллы, представляющие собой тонкие (диаметром 0,1—0,6 мкм) волосковидные структуры на поверхности эукариотических клеток. Длина их может составлять от 3—15 мкм до 2 мм (реснички гребных пластинок гребневиков). Могут быть подвижны или нет: неподвижные реснички играют роль рецепторов. Характерны для инфузорий. У многих беспозвоночных животных ими покрыта вся поверхность тела (ресничные черви, личинки кишечнополостных и губок) или отдельные его участки (например, жабры у полихет и двустворчатых моллюсков, подошва ноги у брюхоногих моллюсков[источник не указан 362 дня]). У коловраток из специализированных ресничек состоит коловращательный аппарат. У многих беспозвоночных (кишечнополостные, гребневики, турбеллярии и др.) реснички также имеются на клетках кишечного эпителия. У позвоночных (в том числе человека) клетки с подвижными ресничками также есть во многих органах. У человека ресничным эпителием выстланы дыхательные пути, евстахиевы трубы, семявыносящие канальцы, желудочки мозга и спинномозговой (центральный) канал[источник не указан 362 дня]. Видоизмененные реснички служат световоспринимающим аппаратом фоторецепторов сетчатки глаза и воспринимающим запахи аппаратом хеморецепторов обонятельного эпителия. Снаружи покрыты мембраной, являющейся продолжением плазмолеммы — цитоплазматической мембраны. В центре проходит две полные (состоящие из 13 протофиламентов) микротрубочки, на периферии — девять пар микротрубочек, из которых в каждой паре одна полная, а вторая неполная (состоит из 11 протофиламентов). У основания находится базальное тело (кинетосома), имеющее в поперечном разрезе ту же структуру, что и половинка центриоли, то есть состоящее из девяти троек микротрубочек.

К каждой полной микротрубочке периферических пар (дублетов) вдоль всей её длины присоединены «ручки» из двигательного белка динеина (см. статью аксонема). При гидролизе АТФ головки динеина «шагают» по микротрубочке соседнего дублета. Если бы микротрубочки не были закреплены на кинетосоме, это вызвало бы скольжение дублетов друг относительно друга. Такое скольжение наблюдается в эксперименте на ресничках, обработанных трипсином (длина аксонемы при добавлении АТФ увеличивается в результате в 9 раз). В интактной ресничке происходит изгибание дублетов и, в результате, всей реснички. Как правило, реснички совершают удары в одной плоскости. У инфузорий прямой удар (продвигающий клетку вперед) ресничка совершает в выпрямленном состоянии, а возвратный — в изогнутом. Как регулируется согласованное изгибание разных дублетов, видимо, неизвестно. При деполяризации мембраны и поступлении внутрь клетки ионов кальция у инфузорий направление прямого удара может меняться на противоположное

Жгутик — поверхностная структура, присутствующая у многих прокариотических и эукариотических клеток и служащая для их движения в жидкой среде или по поверхности твёрдых сред. Жгутики прокариот и эукариот резко различаются: бактериальный жгутик имеет толщину 10—20 нм и длину 3—15 мкм, он пассивно вращается расположенным в мембране мотором; жгутики же эукариот толщиной до 200 нм и длиной до 200 мкм, они могут самостоятельно изгибаться по всей длине. У эукариот часто также присутствуют реснички, идентичные по своему строению жгутику, но более короткие (до 10 мкм).

Вопрос №47. Мышечные волокна как надклеточные структуры.

Как известно, все ткани организма имеют клеточную структуру, не представляют исключение и мышцы. Поэтому мне придется провести краткий экскурс в цитологию – науку о клетке, и напомнить читателям о роли и свойствах основных структур клетки.

В грубом приближении клетка состоит из двух важнейших, взаимосвязанных между собой частей – цитоплазмы и ядра.

Ядро – содержит в себе молекулы ДНК , в которых заключена вся наследственная информация. ДНК – полимер, закрученный в виде двойной спирали, каждая спираль которого составлена из огромного количества четырех видов мономеров, называемых нуклеотидами. Последовательность нуклеотидов в цепочке кодирует все белки организма.

Ядро ответственно за размножение клетки – деление . Деление клетки начинается с разделения молекулы ДНК на две спирали, каждая из которых способна достроить парную из набора свободных нуклеотидов и вновь превратится в молекулу ДНК. Таким образом, количество ДНК в ядре удваивается, далее ядро делится на две части, а за ним и вся клетка.

Цитоплазма – это все, что в клетке окружает ядро. Она состоит из цитозоли (клеточной жидкости), в которую включены различные органеллы, такие как митохондрии, лизосомы, рибосомы и прочие.

Митохондрии – это энергетические станции клетки, в них с помощью различных ферментов происходит окисление углеводов и жирных кислот. Энергия, выделяющаяся при окислении веществ, идет на присоединение третьей фосфатной группы к молекуле Аденезиндифосфата (АДФ) с образованием Аденезинтрифосфата (АТФ) – универсального источника энергии для всех процессов, протекающих в клетке. Отсоединяя третью фосфатную группу и вновь превращаясь в АДФ, АТФ выделяет запасенную ранее энергию.

Ферменты или Энзимы – вещества белковой природы в сотни и тысячи раз увеличивающие скорость протекания химических реакций. Практически все жизненно важные химические процессы в организме происходят только в присутствии специфических ферментов.

Лизосомы – округлые пузырьки, содержащие около 50 ферментов. Лизосомные ферменты расщепляют поглощенный клеткой материал и собственные внутренние структуры клетки (автолизис). Лизосомы, сливаясь в фагосомы, способны переваривать целые органеллы, подлежащие дезинтеграции.

Рибосомы – органеллы, на которых происходит сборка белковой молекулы.

Клеточная мембрана – оболочка клетки, она обладает избирательной проницаемостью, то есть способностью пропускать одни вещества и задерживать другие. Задача мембраны сохранять постоянство внутренней среды клетки.

Соседние файлы в предмете Биология