Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Gotovye_ShPOR_PO_TM.docx
Скачиваний:
12
Добавлен:
28.07.2019
Размер:
203.49 Кб
Скачать

16. Деформации при упругом растяжении и сжатии. Закон Гука.

Деформацией называют изменение формы, размеров или объема тела. Деформация может быть вызвана действием на тело приложенных к нему внешних сил. Деформации, полностью исчезающие после прекращения действия на тело внешних сил, называют упругими, а деформации, сохраняющиеся и после того, как внешние силы перестали действовать на тело, - пластическими. Различают деформации растяжения или сжатия (одностороннего или всестороннего), изгиба, кручения и сдвига. Силы, возникающие в теле при его упругой деформации и направленные против направления смещения частиц тела, вызываемого деформацией, называют силами упругости. Силы упругости действуют в любом сечении деформированного тела, а также в месте его контакта с телом, вызывающим деформации. В случае одностороннего растяжения или сжатия сила упругости направлена вдоль прямой, по которой действует внешняя сила, вызывающая деформацию тела, противоположно направлению этой силы и перпендикулярно поверхности тела. Природа упругих сил электрическая. Связь между силой упругости и упругой деформацией тела (при малых деформациях) была экспериментально установлена современником Ньютона английским физиком Гуком. Математическое выражение закона Гука для деформации одностороннего растяжения (сжатия) имеет вид f=-kx, где f - сила упругости; х - удлинение (деформация) тела; k - коэффициент пропорциональности, зависящий от размеров и материала тела, называемый жесткостью. Единица жесткости в СИ - ньютон на метр (Н/м).

17. Мощность. Единицы измерения.

Мощностью называется работа, совершаемая силой за единицу времени. Средняя мощность Рср силы F за время на перемещении , с которым сила образует угол , определяется по формуле . Переходя к пределу при стремление рассматриваемого промежутка времени к нулю, получаем истинную мощность Как было указанно, F cos является проекцией силы на направление движения материальной точки. Обозначив F cos через , получим так как Мощность измеряется в единицах работы, отнесённых к единице времени. За единицу мощности принят ватт(Вт) – мощность , соответствующая работе в один джоуль в секунду, 1Вт=1 .

18. Поперечная деформация. Коэффициент Пуассона.

При растяжении и сжатии возникает и поперечная деформация стержня. Поперечный размер бруса первоначально равный b, уменьшился до b1 . Абсолютное сужение Δb = b – b1.Отношение абсолютной поперечной деформации к первоначальному поперечному размеру называется относительной поперечной деформацией 

ε' = Δb/ b

Опытами французского ученого Пуассона (1781-1840) установлено, что отношение относительной поперечной деформации к относительной продольной деформации есть величина постоянная для данного материала и называется коэффициентом поперечной деформации или коэффициентом Пуассона  μ = .

Коэффициент Пуассона, как и модуль упругости первого рода, зависит только от материала и характеризует его упругие свойства. Коэффициент Пуассона величина безразмерная. Значения для некоторых материалов: Сталь – 0,24...0,30; Ал. сплавы – 0,3…0,35

19. Работа постоянной силы на прямолинейном перемещении.

Работа W постоянно силы при прямолинейном движении точки её приложения равна произведению модуля силы F на расстояние s и на косинус угла между направлением силы u направлением перемещения, т.е.

20. Понятие о срезе и смятии. Условия прочности.

Сдвигом называется деформация, возникающая под действием двух близко расположенных противоположно направленных равных сил. При этом возникают касательные напряжения. Разрушение материала под их воздействием называют срезом. Смятием называется местное сжатие материалов соприкасающихся деталей по площадкам передачи давления. Возникающие нормальные напряжения смятия являются местными: они быстро убывают при удалении от площадки соприкосновения элементов. Условие прочности элементов, работающих на срез, имеет вид , где допускаемое касательное напряжение.

21. Потенциальная и кинетическая энергии.

Кинетическая энергия механической системы — это энергия механического движения этой системы.Сила F, действуя на покоящееся тело и вызывая его движение, совершает работу, а энергия движущегося тела возрастает на величину затраченной работы. Таким образом, работа dA силы F на пути, который тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии dW тела, т. е. dA = dW. Потенциальная энергия — механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними. Тело, находясь в потенциальном поле сил, обладает потенциальной энергией U. Работа консервативных сил при элементарном (бесконечно малом) изменении конфигурации системы равна приращению потенциальной энергии, взятому со знаком минус, так как работа совершается за счет убыли потенциальной энергии: dA = - dU. Работа dA выражается как скалярное произведение силы F на перемещение dr и это выражение можно записать в виде

22. Чистый сдвиг — это такое напряженное состояние, когда на гранях выделенного из бруса элемента действуют только касательные напряжения. Такие грани называются площадками чистого сдвига.

Величина a - абсолютный сдвиг, γ = tg γ = a/h - относительный сдвиг.

С деформацией сдвига мы встречаемся при резании ножницами металла, при работе различных соединений (резьбовых, шлицевых, шпоночныхб заклёпочных и сварных содениениях).

23. Виды движения в зависимости от ускорения.

Виды движения точки в зависимости от ускорения Прямолинейное движение. В этом случае траектория движения точки – прямая, причем точка движется вдоль этой прямой в одном направлении. Радиус кривизны прямой R равен бесконечности (прямую можно считать окружностью бесконечно большого радиуса). Тогда , поэтому может изменяться только алгебраическая величина скорости точки. Это изменение полностью характеризуется касательным ускорением . Равномерное криволинейное движение. Так как при равномерном движении точки модуль скорости остается постоянным, то есть v = const, тогда . Вектор полного ускорения а, следовательно, направлен по глав­ной нормали в сторону вогнутости, модуль полного ускорения равен . Равномерное прямолинейное движение. В этом случае и , а значит а = 0. Единственный вид движения, в котором ускорение точки все время остается равным нулю, - равномерное прямолинейное движение. Равнопеременное криволинейное движение. Равнопеременным называется такое криволинейное движение точки, при котором касательное ускорение остается все время величиной постоянной: . Если при равномерном криволинейном движении точки модуль скорости возрастает, то движение называется равноускоренным, а если убывает – равнозамедленным.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]