Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
химия!!!!!!!!.docx
Скачиваний:
21
Добавлен:
20.04.2019
Размер:
940.61 Кб
Скачать

Вопрос28.

Теория электролитической диссоциации

( С. Аррениус, 1887г. )

 

1.      При растворении в воде (или расплавлении) электролиты распадаются на положительно и отрицательно заряженные ионы (подвергаются электролитической диссоциации).

2.      Под действием электрического тока катионы (+) двигаются к катоду (-), а анионы (-) – к аноду (+).

3.      Электролитическая диссоциация - процесс обратимый (обратная реакция называется моляризацией).

4.      Степень электролитической диссоциации (a) зависит от природы электролита и растворителя, температуры и концентрации. Она показывает отношение числа молекул, распавшихся на ионы (n) к общему числу молекул, введенных в раствор (N).

 

a = n / N                     0<a<1

 

Механизм электролитической диссоциации ионных веществ

 

При растворении соединений с ионными связями (например, NaCl) процесс гидратации начинается с ориентации диполей воды вокруг всех выступов и граней кристаллов соли.

Ориентируясь вокруг ионов кристаллической решетки, молекулы воды образуют с ними либо водородные, либо донорно-акцепторные связи. При этом процессе выделяется большое количество энергии, которая называется энергией гидратации.

Энергия гидратации, величина которой сравнима с энергией кристаллической решетки, идет на разрушение кристаллической решетки. При этом гидратированные ионы слой за слоем переходят в растворитель и, перемешиваясь с его молекулами, образуют раствор.

 

Механизм электролитической диссоциации полярных веществ

 

Аналогично диссоциируют и вещества, молекулы которых образованы по типу полярной ковалентной связи (полярные молекулы). Вокруг каждой полярной молекулы вещества (например, HCl), определенным образом ориентируются диполи воды. В результате взаимодействия с диполями воды полярная молекула еще больше поляризуется и превращается в ионную, далее уже легко образуются свободные гидратированные ионы.

 

Электролиты и неэлектролиты

 

Электролитическая диссоциация веществ, идущая с образованием свободных ионов объясняет электрическую проводимость растворов.

Процесс электролитической диссоциации принято записывать в виде схемы, не раскрывая его механизма и опуская растворитель (H2O), хотя он является основным участником.

 

CaCl2  « Ca2+ + 2Cl-

KAl(SO4)2 « K+ + Al3+ + 2SO42-

HNO3 « H+ + NO3-

Ba(OH)2  « Ba2+ + 2OH-

 

Из электронейтральности молекул вытекает, что суммарный заряд катионов и анионов должен быть равен нулю.

Например, для

Al2(SO4)3 –– 2 • (+3) + 3 • (-2) = +6 - 6 = 0

KCr(SO4)2 –– 1 • (+1) + 3 • (+3) + 2 • (-2) = +1 + 3 - 4 = 0

 

Сильные электролиты

 

Это вещества, которые при растворении в воде практически полностью распадаются на ионы. Как правило, к сильным электролитам относятся вещества с ионными или сильно полярными связями: все хорошо растворимые соли, сильные кислоты (HCl, HBr, HI, HClO4, H2SO4,HNO3) и сильные основания (LiOH, NaOH, KOH, RbOH, CsOH,Ba(OH)2,Sr(OH)2,Ca(OH)2).

В растворе сильного электролита растворённое вещество находится в основном в виде ионов (катионов и анионов); недиссоциированные молекулы практически отсутствуют.

 

Слабые электролиты

 

Вещества, частично диссоциирующие на ионы. Растворы слабых электролитов наряду с ионами содержат недиссоциированные молекулы. Слабые электролиты не могут дать большой концентрации ионов в растворе.

 

К слабым электролитам относятся:

1)     почти все органические кислоты (CH3COOH, C2H5COOH и др.);

2)     некоторые неорганические кислоты (H2CO3, H2S и др.);

3)     почти все малорастворимые в воде соли, основания и гидроксид аммония (Ca3(PO4)2; Cu(OH)2; Al(OH)3; NH4OH);

4)     вода.

Они плохо (или почти не проводят) электрический ток.

СH3COOH « CH3COO- + H+

Cu(OH)2 « [CuOH]+ + OH(первая ступень)

[CuOH]+ « Cu2+ + OH(вторая ступень)

H2CO3 « H+ + HCO(первая ступень)

HCO3« H+ + CO32- (вторая ступень)

 

Неэлектролиты

 

Вещества, водные растворы и расплавы которых не проводят электрический ток. Они содержат ковалентные неполярные или малополярные связи, которые не распадаются на ионы.

Электрический ток не проводят газы, твердые вещества (неметаллы), органические соединения (сахароза, бензин, спирт).

 

Степень диссоциации. Константа диссоциации

 

Концентрация ионов в растворах зависит от того, насколько полно данный электролит диссоциирует на ионы. В растворах сильных электролитов, диссоциацию которых можно считать полной, концентрацию ионов легко определить по концентрации (c) и составу молекулы электролита (стехиометрическим индексам), например:

 

       c H2SO4  «  

 2c          c 2H+ SO42-

 

Концентрации ионов в растворах слабых электролитов качественно характеризуют степенью и константой диссоциации.

Степень диссоциации (a) - отношение числа распавшихся на ионы молекул (n) к общему числу растворенных молекул (N):

 

a = n / N

 

и выражается в долях единицы или в % (a = 0,3 – условная граница деления на сильные и слабые электролиты).

 

Пример

Определите мольную концентрацию катионов и анионов в 0,01 М растворах KBr, NH4OH, Ba(OH)2, H2SO4 и CH3COOH.

Степень диссоциации слабых электролитов a = 0,3.

 

Решение

KBr, Ba(OH)2 и H2SO4 - сильные электролиты, диссоциирующие полностью (a = 1).

 

KBr «  K+ + Br-

[K+] = [Br-] = 0,01 M

 

Ba(OH)2 « Ba2+ + 2OH-

[Ba2+] = 0,01 M

[OH-] = 0,02 M

 

H2SO4 « 2H+ + SO4

[H+] = 0,02 M

[SO42-] = 0,01 M

 

NH4OH и CH3COOH – слабые электролиты (a = 0,3)

 

NH4OH+4 + OH-

[NH+4] = [OH-] = 0,3 • 0,01 = 0,003 M

 

CH3COOH « CH3COO+ H+

[H+] = [CH3COO-] = 0,3 • 0,01 = 0,003 M

 

Степень диссоциации зависит от концентрации раствора слабого электролита. При разбавлении водой степень диссоциации всегда увеличивается, т.к. увеличивается число молекул растворителя (H2O) на одну молекулу растворенного вещества. По принципу Ле Шателье равновесие электролитической диссоциации в этом случае должно сместиться в направлении образования продуктов, т.е. гидратированных ионов.

Степень электролитической диссоциации зависит от температуры раствора. Обычно при увеличении температуры степень диссоциации растет, т.к. активируются связи в молекулах, они становятся более подвижными и легче ионизируются. Концентрацию ионов в растворе слабого электролита можно рассчитать, зная степень диссоциации a и исходную концентрацию вещества c в растворе.

 

Пример

Определите концентрацию недиссоциированных молекул и ионов в 0,1 М раствора NH4OH, если степень диссоциации равна 0,01.

 

Решение

Концентрации молекул NH4OH, которые к моменту равновесия распадутся на ионы, будет равна ac. Концентрация ионов NH4- и OH- - будет равна концентрации продиссоциированных молекул и равна ac (в соответствии с уравнением электролитической диссоциации)

 

NH4OH

«

NH4+

+

OH-

c - ac

 

ac

 

ac

 

[N+H4] = [OH]= ac = 0,01 • 0,1 = 0,001 моль/л

[NH4OH] = c - ac = 0,1 – 0,001 = 0,099 моль/л

 

Константа диссоциации (KD) - отношение произведения равновесных концентраций ионов в степени соответствующих стехиометрических коэффициентов к концентрации недиссоциированных молекул.

Она является константой равновесия процесса электролитической диссоциации; характеризует способность вещества распадаться на ионы: чем выше KD, тем больше концентрация ионов в растворе.

Диссоциации слабых многоосновных кислот или многокислотных оснований протекают по ступеням, соответственно для каждой ступени существует своя константа диссоциации:

 

Первая ступень:

H3PO4 « H+ + H2PO4-

KD1 = ([H+][H2PO4-]) / [H3PO4] = 7,1 • 10-3

 

Вторая ступень:

H2PO4- « H+ + HPO42-

KD2 = ([H+][HPO42-]) / [H2PO4-] = 6,2 • 10-8

 

Третья ступень:

HPO42- « H+ + PO43-

KD3 = ([H+][PO43-]) / [HPO42-] = 5,0 • 10-13

 

KD1 > KD2 > KD3

 

Пример

Получите уравнение, связывающее степень электролитической диссоциации слабого электролита (a) с константой диссоциации (закон разбавления Оствальда) для слабой одноосновной кислоты НА.

 

HA « H+ + A+

K= ([H+][A-]) / [HA]

 

Если общую концентрацию слабого электролита обозначить c, то равновесные концентрации Н+ и A- равны ac, а концентрация недиссоциированных молекул НА - (c - ac) = c (1 - a)

 

K= (a • c • ac) / c(1 - a) = a2c / (1 - a)

 

В случае очень слабых электролитов (a £ 0,01)

 

K= c • a2 или a = \é(KD / c)

 

Пример

Вычислите степень диссоциации уксусной кислоты и концентрацию ионов H+ в 0,1 M растворе, если KD(CH3COOH) = 1,85 • 10-5

 

Решение

Воспользуемся законом разбавления Оствальда

 

\é(KD / c) = \é((1,85 • 10-5) / 0,1)) = 0,0136 или a = 1,36%

[H+] = a • c = 0,0136 • 0,1 моль/л

Сильные и слабые электролиты

В зависимости от величины степени электролитической диссоциация различают сильные и слабые электролиты.

Электролиты, степень диссоциации которых даже в относительно концентрированных растворах велика (близка к 1), называют сильными, а электролиты, степень диссоциации которых даже в разбавленных растворах мала - слабыми.

К сильным электролитам относятся:

1) почти все соли,  2) такие минеральные кислоты, как   и некоторые другие,  3) основания щелочных и щелочноземельных металлов, например, 

К слабым электролитам относятся :

1) почти все органические кислоты, например муравьиная  , уксусная  ,  2) некоторые минеральные кислоты, например  .  3) многие гидроксиды металлов (кроме гидроксидов щелочных и щелочноземельных металлов), например  . К слабым электролитам относится вода.

Вопрос 29. Тео́рия си́льных электроли́тов Деба́я — Хю́ккеля — предложенная Петером Дебаем и Эрихом Хюккелем в 1923 году статистическая теория разбавленных растворов сильныхэлектролитов, согласно которой каждый ион действием своего электрического заряда поляризует окружение и образует вокруг себя некоторое преобладание ионов противоположного знака — так называемую ионную атмосферу. В отсутствие внешнего электрического поля ионная атмосфера имеет сферическую симметрию, и её заряд равен по величине и противоположен по знаку заряду создающего её центрального иона. В этой теории не уделено почти никакого внимания образованию пар противоположно заряженных ионов путём непосредственного взаимодействия между ними. Понижение давления пара растворителя над раствором определяется в основном количеством растворенных частиц. Однако количество растворенных частиц в растворах электролитов, в отличие от растворов неэлектролитов, определяется не только концентрацией раствора, но и степенью диссоциации электролита, поскольку все молекулы или часть молекул электролита в растворе распадаются на ионы. Применяя закон Рауля к растворам электролитов Вант-Гофф ввел поправочный коэффициент i в уравнение для осмотического давления Р = С R Т. Коэффициент i , учитывает увеличение числа частиц в растворе в результате электролитической диссоциации: dр/р0i  = i Х2  (Р = i С R Т). Коэффициент диссоциации i показывает, во сколько раз число частиц в растворе электролита больше числа частиц в растворе неэлектролита той же концентрации, (для растворов неэлектролитов i=1, а для растворов электролитов i> 1). При диссоциации уксусной кислоты количество образовавшихся ионов n=2. (СН3СООН DСН3СОО- + Н+). Число ионов в 1л раствора Nион = anСNА  , А число недиссоциированных молекул растворенного вещества Nнедисс = (1-a)СNА , Где a = Nдис/N0 -  степень диссоциации электролита (N0 = Nдисс + Nнедисс), с – молярная концентрация раствора (моль/л).  Таким образом, коэффициент диссоциации i связан со степенью диссоциации  a электролита соотношением: a = (i - 1) /(n-1).и, значит по относительному изменению давления пара растворителя над раствором известной концентрации можно определить степень диссоциации электролита. Растворы сильных электролитов обнаруживают особенности в поведении, не соответствующие их полной диссоциации на ионы. Так, реальная концентрация ионов оказывается значительно меньше концентрации, задаваемой при приготовлении раствора. Кажущаяся (определяемая экспериментально) степень диссоциации сильных электролитов в соответствии с опытными данными меньше 1 даже в разбавленных растворах. Это связано с тем, что в растворах электролитов наблюдается некоторая степень упорядоченности взаимного расположения ионов, вызванная электростатическим взаимодействием катионов и анионов. На небольших расстояниях от каждого иона преимущественно располагаются ионы противоположного знака, т.е. вокруг каждого иона в растворе создается ионная атмосфера. Таким образом, для процессов диссоциации и химических  реакций, протекающих в растворах с участием сильных электролитов, а также в концентрированных растворах слабых электролитов, нельзя рассчитывать константы равновесия на основании концентраций свободных ионов, которых нет в реальных системах. Кроме того, различная степень сольватации веществ, участвующих в реакции, по-разному изменяет скорости прямой и обратной  реакций, что также приводит к зависимости константы равновесия от общего содержания ионов в растворе. Поэтому для описания свойств реальных растворов, как и других реальных систем используют метод активностей Льюиса, в котором для учета межионных и межмолекулярных взаимодействий введено понятие эффективной концентрации или активности. Подстановка активности вместо концентрации в термодинамические соотношения, справедливые для идеальных растворов, позволяет применять их для описания любых систем.Активность a электролита суммарно отражает все эффекты взаимодействия ионов между собой и с молекулами растворителя: a = g Сm, где Сm – моляльная концентрация электролита; g - коэффициент активности, который можно рассматривать как  меру различия поведения электролита в данном растворе и в растворе, который принимают за идеальный. Для идеальных растворов g = 1. Бесконечно разбавленные растворы по своим сойствам приближаются к идеальным, поэтому в таких растворах полагают g»1.  Коэффициенты активности и, следовательно, сами активности определяют экспериментально, измеряя различные свойства раствора, например, давление пара растворителя, температуру кипения  или кристаллизации раствора и др. Электростатическая теория сильных электролитов, развитая в трудах Дебая, Хюккеля, позволяет вычислить средний коэффициент активности g± -сильного бинарного электролита в разбавленных растворах. Сила электростатического взаимодействия ионов с их окружением (ионной атмосферой) определяется плотностью заряда в этом окружении, а плотность заряда, в свою очередь, зависит от того, сколько ионов находится в единице объема раствора, т.е. от их концентрации, и от того, какой заряд несут эти ионы. Мерой этого взаимодействия является ионная силараствора I, рассчитываемая по формуле: I = 0,5 S Сm,iZi 2   где    Сm,i  -  моляльная концентрация i –иона; Zi – зарядовое число i –го компонента. В очень разбавленных растворах (I<0,1) средний коэффициент активности электролита зависит только от ионной силы раствора и не зависит от природы присутствующих в растворе ионов.

Вопрос 30. Электропроводность электролитов, способность электролитов проводить электрический ток при приложении электрического напряжения. Носителями тока являются положительно и отрицательно заряженные ионы - катионы ианионы, которые существуют в растворе вследствие электролитич. диссоциации. Ионная электропроводность электролитов, в отличие от электронной, характерной для металлов, сопровождается переносом вещества кэлектродам с образованием вблизи них новых химических соединений. Общая (суммарная) проводимость состоит из проводимости катионов и анионов, которые под действием внешнего электрического поля движутся в противоположных направлениях. Доля общего кол-ва электричества, переносимого отдельными ионами, называетсячислами переноса, сумма которых для всех видов ионов, участвующих в переносе, равна единице.

Количественно электропроводность электролитов характеризуют эквивалентной электропроводностью   - проводящей способностью всех ионов, образующихся в 1 грамм-эквиваленте электролита. Величина   связана с удельной электропроводностью   соотношением:

где с - концентрация раствора в г-экв/л. Эквивалентная электропроводность зависит от природы растворенного вещества и растворителя, структуры раствора, а также от концентрации, температуры, давления. Предельно разбавленному раствору, в котором все молекулы диссоциированы на ионы, соответствует предельное значение   В соответствии с <i.Кольрауша законом  </i.равна сумме эквивалентных электропроводностей катионов и анионов. Эквивалентная электропроводность отдельного иона пропорциональна скорости его движения в растворе и характеризует подвижность иона в растворе. 

Описание концентрационной зависимости  как и других свойств растворов электролитов (см. Растворы электролитов), обычно базируется на ионном подходе, в рамках которого растворитель рассматривается как бесструктурная диэлектрическая среда, в которой ионы движутся в соответствии с законами гидродинамики и характером межионного взаимодействия. Простейшей моделью является модель заряженных твердых сфер, движущихся в вязком растворителе под влиянием силы, обусловленной градиентом потенциала. При этом сила сопротивления движению иона в растворе определяется уравнением Стокса. В рамках применимости этого уравнения выполняется правило Вальдена-Писаржевского, в соответствии с которым для одного и того же электролита в любых растворителях произведение предельного значения эквивалентной электропроводности   на вязкость растворителя  является постоянной величиной, которая не зависит от природы растворителя, но является функцией температуры. Сравнительно хорошо это правило выполняется только для слабо сольватированных ионов, в частности ионов, имеющих большие размеры в кристаллической фазе. С увеличением концентрации значение   уменьшается в основном в растворах слабых электролитов и в области малых концентраций удовлетворительно описывается законом разведения Оствальда.

В растворах сильных электролитов концентрац. зависимость   определяется межионным взаимодействием. В области применимости теории Дебая-Хюккеляимеются две причины для торможения ионов вследствие межионного взаимодействия. Первая из них связана с тем, что движение иона тормозится ионной атмосферой, которая имеет заряд, противоположный центральному иону, и под влиянием поля движется в направлении, противоположном перемещению иона (электрофоретический эффект). Вторая причина связана с тем, что при движении иона под действием электрического поля его ионная атмосфера деформируется и теряет сферическую симметрию, причем большая часть заряда ионной атмосферы концентрируется позади центрального иона (релаксационный эффект). Учет обоих эффектов приводит к уравнению Онсагера:

где А и В - эмпирические постоянные, являющиеся функциями температуры, вязкости и диэлектрической проницаемости растворителя.

Как и теория Дебая-Хюккеля, уравнение Онсагера ограничено областью умеренно разбавленных растворов. Для описания концентрированных растворов возникает необходимость в учете некулоновской части межионного взаимодействия, в частности в учете ионных размеров. Для этой цели применяют методы кинетической теории ионных систем. К дополнительному уменьшению   приводит образование ионных ассоциатов - пар, тройников и т. п., которое, как и эффект неполной диссоциации, сокращает общее число свободных ионов в растворе. Для учета этого эффекта в уравнении Онсагера заменяют общую концентрацию ионов концентрацией свободных ионов   (  - степень электролитической диссоциации, что приводит к уравнению Фуосса-Онсагера:

В переменных электрических полях при достаточно высокой частоте ион не уходит далеко от центра ионной атмосферы, вследствие чего она не деформируется. Обусловленный деформацией релаксационный эффект не возникает, что приводит к увеличению   - так называемый эффект Дебая-Фалькенхагена. Величина   возрастает также в постоянных электрических полях достаточно высокой напряженности (104-105 В/см). В этих условиях ионыдвижутся настолько быстро, что ионная атмосфера не успевает образоваться, вследствие чего практически отсутствуют и релаксационные и электрофоретические эффекты. В результате   стремится к предельному значению   (так называемый эффект Вина). В слабых электролитах эффект Вина вызывается также смещением диссоциативного равновесия в сильном электрического поле в сторону образования ионов. 

Влияние температуры и давления на электропроводность электролитов обусловлено изменением предельного значения   вследствие изменения структуры растворителя и характера ион-молекулярного взаимодействия, изменения влияния межионного взаимодействия и смещения диссоциативного равновесия. Более детальное описание механизма электропроводности электролитов в широкой области концентраций, температур и давлений возможно в рамках ион-молекулярного подхода. При этом удельная электропроводность рассчитывают через электрический потокj(t)=   и автокорреляционную функцию   с помощью соотношения:

где  - кол-во ионов электролита в единице объема раствора, е -элементарный электрический заряд,   - приведенная масса катиона и аниона, za - степень окисления иона сорта a, vа(t) - его скорость в момент времени t.

ЭЛЕКТРОПРОВОДНОСТЬ ЭЛЕКТРОЛИТОВ , способность электролитов проводить электрич. ток при приложении электрич. напряжения. Носителями тока являются положительно и отрицательно заряженные ионы - катионы и анионы, к-рые существуют в р-ре вследствие электролитич. диссоциации. Ионная Э. э., в отличие от электронной, характерной для металлов, сопровождается переносом в-ва к электродам с образованием вблизи них новых хим. соед. (см. Электролиз ). Общая (суммарная) проводимость состоит из проводимости катионов и анионов, к-рые под действием внешнего электрич. поля движутся в противоположных направлениях. Доля общего кол-ва электричества, переносимого отд. ионами, наз. числами переноса, суммак-рых для всех видов ионов, участвующих в переносе, равна единице.  Количественно Э. э. характеризуют эквивалентной электропроводностью  - проводящей способностью всех ионов, образующихся в 1 грамм-эквиваленте электролита. Величина  связана с уд. электропроводностью соотношением:

где с - концентрация р-ра в г-экв/л. Эквивалентная электропроводность зависит от природы растворенного в-ва и р-рителя, структуры р-ра, а также от концентрации, т-ры, давления. Предельно разбавленному р-ру, в к-ром все молекулы диссоциированы на ионы, соответствует предельное значение  В соответствии с Кольрауша законом  равна сумме эквивалентных электропроводностей катионов и анионов. Эквивалентная электропроводность отд. иона пропорциональна скорости его движения в р-ре и характеризует подвижность иона в р-ре.  Описание концентрац. зависимости как и других св-в р-ров электролитов (см. Растворы электролитов ), обычно базируется на ионном подходе, в рамках к-рого р-ритель рассматривается как бесструктурная диэлектрич. среда, в к-рой ионы движутся в соответствии с законами гидродинамики и характером межионного взаимодействия. Простейшей моделью является модель заряженных твердых сфер, движущихся в вязком р-рителе под влиянием силы, обусловленной градиентом потенциала. При этом сила сопротивления движению иона в р-ре определяется ур-нием Стокса (см. Вискозиметрия ). В рамках применимости этого ур-ния выполняется правило Вальдена-Писаржевского, в соответствии с к-рым для одного и того же электролита в любых р-рителях произведение предельного значения эквивалентной электропроводности  на вязкость р-рителя  является постоянной величиной, к-рая не зависит от природы р-рителя, но является ф-цией т-ры. Сравнительно хорошо это правило выполняется только для слабо сольватир. ионов, в частности ионов, имеющих большие размеры в кристаллич. фазе. С увеличением концентрации значение  уменьшается в осн. в р-рах слабых электролитов и в области малых концентраций удовлетворительно описывается законом разведения Оствальда (см. Электролитическая диссоциация).  В р-рах сильных электролитов концентрац. зависимость  определяется межионным взаимодействием. В области применимости Дебая-Хюккеля теории имеются две причины для торможения ионов вследствие межионного взаимодействия. Первая из них связана с тем, что движение иона тормозится ионной атмосферой, к-рая имеет заряд, противоположный центральному иону, и под влиянием поля движется в направлении, противоположном перемещению иона (электрофоретич. эффект). Вторая причина связана с тем, что при движении иона под действием электрич. поля его ионная атмосфера деформируется и теряет сферич. симметрию, причем большая часть заряда ионной атмосферы концентрируется позади центрального иона (релаксац. эффект). Учет обоих эффектов приводит кур-нию Онсагера:

где А и В - эмпирич. постоянные, являющиеся ф-циями т-ры, вязкости и диэлектрич. проницаемости р-рителя.  Как и теория Дебая-Хюккеля, ур-ние Онсагера ограничено областью умеренно разбавленных р-ров. Для описания концентрир. р-ров возникает необходимость в учете некулоновской части межионного взаимод., в частности в учете ионных размеров. Для этой цели применяют методы кинетич. теории ионных систем. К дополнит. уменьшению приводит образование ионных ассоциатов - пар, тройников и т. п., к-рое, как и эффект неполной диссоциации, сокращает общее число своб. ионов в р-ре. Для учета этого эффекта в ур-нии Онсагера заменяют общую концентрацию ионов концентрацией своб. ионов  ( - степень электролитич. диссоциации), что приводит к ур-нию Фуосса-Онсагера:

В переменных электрич. полях при достаточно высокой частоте ион не уходит далеко от центра ионной атмосферы, вследствие чего она не деформируется. Обусловленный деформацией релаксац. эффект не возникает, что приводит к увеличению -т.наз. эффект Дебая-Фалькенхагена. Величина  возрастает также в постоянных электрич. полях достаточно высокой напряженности (104-105 В/см). В этих условиях ионы движутся настолько быстро, что ионная атмосфера не успевает образоваться, вследствие чего практически отсутствуют и релаксац. и электрофоретич. эффекты. В результате  стремится к предельному значению  (т. наз. эффект Вина). В слабых электролитах эффект Вина вызывается также смещением диссоциативного равновесия в сильном электрич. поле в сторону образования ионов.  Влияние т-ры и давления на Э. э. обусловлено изменением предельного значения  вследствие изменения структуры р-рителя и характера ион-молекулярного взаимод., изменения влияния межионного взаимод. и смещения диссоциативного равновесия. Более детальное описание механизма Э. э. в широкой области концентраций, т-р и давлений возможно в рамках ион-молекулярного подхода. При этом уд. электропроводность рассчитывают через электрич. поток j(t)=  и автокорреляц. ф-цию  с помощью соотношения:

где - кол-во ионов электролита в единице объема р-ра, е - элементарный электрич. заряд,  - приведенная масса катиона и аниона, za - степень окисления иона сорта a, vа(t) - его скорость в момент времени t.  Специфич. механизм электропроводности характерен для к-т и оснований, содержащих соотв. ионы Н+ и ОН-, к-рые в водных р-рах (или других протонных р-рителях) имеют подвижность на порядок больше остальных ионов. Для объяснения аномально высокой проводимости ионов Н+ и ОН-предполагается, что под влиянием электрич. поля протоны перемещаются не только путем миграции, но и по механизму протонного обмена, включающему перенос протона в кислой среде от ионов гидроксония Н3О+ к молекуле воды, а в щелочной - от молекулы воды к иону ОН-.  Эксперим. изучение Э. э.- важное направление физико-химического анализа , поскольку зависимость Э. э. от состава р-ра позволяет судить о концентрации солей, качественный, состав к-рых известен (см. такжеКондуктометрия ). Измерения  используют для определения подвижностей ионов.